Answer:
The equilibrium pressure of NO2 is 0.084 atm
Explanation:
Step 1: Data given
A reaction mixture initially contains 0.86 atm NO and 0.86 atm SO3.
Kp = 0.0118
Step 2: The balanced equation
NO( g) + SO3( g) ⇌ NO2( g) + SO2( g)
Step 3: The initial pressures
p(NO) = 0.86 atm
p(SO3) = 0.86 atm
p(NO2) = 0 atm
p(SO2) = 0 atm
Step 4: The pressure at the equilibrium
For 1 mol NO we need 1 mol SO3 to produce 1 mol NO2 and 1 mol SO2
p(NO) = 0.86 -x atm
p(SO3) = 0.86 -xatm
p(NO2) = x atm
p(SO2) = x atm
Step 5: Define Kp
Kp = ((pNO2)*(pSO2)) / ((pNO)*(pSO3))
Kp = 0.0118 = x²/(0.86 - x)²
X = 0.08427
p(NO) = 0.86 -0.08427 = 0.77573 atm
p(SO3) = 0.86 -0.08427 = 0.77573 atm
p(NO2) = 0.08427 atm
p(SO2) = 0.08427 atm
The equilibrium pressure of NO2 is 0.08427 atm ≈ 0.084 atm
Answer:
Milk is essentially a colloidal dispersion of fat in water. ... However, the fact remains that the fat and water components cannot be mixed together from a solution. There are therefore, two distinct immiscible liquid phase's present, which is why it is a heterogeneous mixture.
Answer:
Concentration of OH⁻:
1.0 × 10⁻⁹ M.
Explanation:
The following equilibrium goes on in aqueous solutions:
.
The equilibrium constant for this reaction is called the self-ionization constant of water:
.
Note that water isn't part of this constant.
The value of
at 25 °C is
. How to memorize this value?
- The pH of pure water at 25 °C is 7.
![[\text{H}^{+}] = 10^{-\text{pH}} = 10^{-7}\;\text{mol}\cdot\text{dm}^{-3}](https://tex.z-dn.net/?f=%5B%5Ctext%7BH%7D%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-%5Ctext%7BpH%7D%7D%20%3D%2010%5E%7B-7%7D%5C%3B%5Ctext%7Bmol%7D%5Ccdot%5Ctext%7Bdm%7D%5E%7B-3%7D)
- However,
for pure water. - As a result,
at 25 °C.
Back to this question.
is given. 25 °C implies that
. As a result,
.
Answer:
Option b. Decomposition
Followed by a reduction process using charcoal
Explanation:
Lead can be obtained from lead nitrate by thermal decomposition of lead nitrate as shown below:
2Pb(NO3)2 —> 2PbO + 4NO2 + O2
The PbO obtained is reduced by charcoal(C) to obtain the metallic Pb as shown below:
2PbO + C —> Pb + CO2