Answer:
rmax/rmin = √1.127
Explanation:
F = GmM / r²
As the masses can be assumed to be constant, the force between the two is proportional to the inverse of the square of the distance between them
(Fmax - Fmin) / Fmin = 0.127
(Fmax - Fmin) = 0.127Fmin
1/rmin² - 1/rmax² = 0.127(1/rmax²)
1/rmin² = 0.127(1/rmax²) + 1/rmax²
1/rmin² = 1.127(1/rmax²)
rmax²/rmin² = 1.127
rmax/rmin = √1.127 ≈ 1.06160256...
"The speed will increase" is the one among the following choices given in the question that describes the speed of a wave traveling through the rope, if <span>the tension in a rope is increased. The correct option among all the options that are given in the question is the first option. I hope that this is the answer that has come to your help.</span>
Answer:
Explanation:
Mass of ice m = 500g = .5 kg
Heat required to raise the temperature of ice by 10 degree
= mass of ice x specific heat of ice x change in temperature
= .5 x 2093 x 10 J
10465 J
Heat required to melt the ice
= mass of ice x latent heat
0.5 x 334 x 10³ J
167000 J
Heat required to raise its temperature to 18 degree
= mass x specific heat of water x rise in temperature
= .5 x 4182 x 18
=37638 J
Total heat
=10465 +167000+ 37638
=215103 J
Answer:
<em>The electric field can either oscillates in the z-direction, or the y-direction, but must oscillate in a direction perpendicular to the direction of propagation, and the direction of oscillation of the magnetic field.</em>
Explanation:
Electromagnetic waves are waves that have an oscillating magnetic and electric field, that oscillates perpendicularly to one another. Electromagnetic waves are propagated in a direction perpendicular to both the electric and the magnetic field. If the wave is propagated in the x-direction, then the electric field can either oscillate in the y-direction, or the z-direction but must oscillate perpendicularly to both the the direction of oscillation of the magnetic field, and the direction of propagation of the wave.