Answer:
I believe that its B my apologies if its wrong/
Explanation:
Answer:
In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component
However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy
Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system
The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Explanation:
Answer:
Lower
Lower
gsintheta (gsinθ)
Explanation:
The sum of forces resolved parallel to the inclined plane is given by;
F - mgsinθ = 0
ma - mgsinθ = 0
ma = mgsinθ
a = gsinθ
Acceleration is proportional to angle of inclination, thus the lower the angle of the slope, lower the acceleration along the ramp.
therefore, the speed at the bottom of a slope will be lower, (velocity is directly proportional to acceleration) and, consequently, the control will be better.
The acceleration along the ramp, is gsintheta (gsinθ)
Answer:
a) 0.658 seconds
b) 0.96 inches
Explanation:

Time taken by the ball to reach the highest point is 0.14 seconds

The highest point reached by the snowball above its release point is 0.315 ft
Total height the snowball will fall is 4+0.315 = 4.315 ft

The snowball will reach the bank at 0.14+0.518 = 0.658 seconds after it has been thrown


The snowball goes 0.5-0.42 = 0.08 ft = 0.96 inches
Answer:
inches and feet (or even centameters)
Explanation:
these are all common units used to measure height