Answer:
The speed of the cart and clay after the collision is 50 cm/s .
Explanation:
Given :
Mass of lump , m = 500 g = 0.5 kg .
Velocity of lump , v = 30 cm/s .
Mass of cart , M = 1 kg .
Velocity of cart , V = 60 cm/s .
We know by conservation of momentum :

Here ,
is the speed of the cart and clay after the collision .
Putting all value in above equation .
We get :

Hence , this is the required solution .
Answer:
v = 384km/min
Explanation:
In order to calculate the speed of the Hubble space telescope, you first calculate the distance that Hubble travels for one orbit.
You know that 37000 times the orbit of Hubble are 1,280,000,000 km. Then, for one orbit you have:

You know that one orbit is completed by Hubble on 90 min. You use the following formula to calculate the speed:

hence, the speed of the Hubble is approximately 384km/min
It takes significantly stronger magnetic and electric field strengths to move a beam of alpha particles compared with the beam of electrons(betaparticles) because the charge of an alpha particle is twice stronger than a beta particle. Therefore, more energy is needed to move the alpha particle.
Answer:
False
Explanation:
When the location of the poles changes in the z-plane, the natural or resonant frequency (ω₀) changes which in turn changes the damped frequency (ωd) of the system.
As the poles of a 2nd-order discrete-time system moves away from the origin then natural frequency (ω₀) increases, which in turn increases damped oscillation frequency (ωd) of the system.
ωd = ω₀√(1 - ζ)
Where ζ is called damping ratio.
For small value of ζ
ωd ≈ ω₀