Rain fall which is called run off
wavelength of the EM wave produced by your iclicker is 0.33 m.
<h3>What makes an EM wave?</h3>
- When an electric field (illustrated in red arrows) combines with a magnetic field, electromagnetic waves are generated (which is shown in blue arrows). An electromagnetic wave's magnetic and electric fields are perpendicular to each other and to the wave's direction.
- A changing magnetic field causes a changing electric field, and vice versa—the two are inextricably related. Electromagnetic waves are created by changing fields. Electromagnetic waves, unlike mechanical waves, do not require a medium to propagate.
The clicker emits EM (electromagnetic) wave which travels at the speed of light, that is
v = 3 x 10⁸ m/s
The frequency is
f = 900mHz = 9 x 10⁸ Hz
velocity = frequency * wavelength, the wavelength, λ, is given by
fλ = v
λ = v/f
= (3 x 10⁸ m/s) / (9 x 10⁸ 1/s)
= 1/3 m = 0.333 m
To learn more about electromagnetic waves refer,
brainly.com/question/25847009
#SPJ1
Answer:
The second one, the higher the hertz the higher the frequency we hear
Explanation:
Answer: The coefficient of kinetic friction is μ = 0.6
Explanation:
For an object of mass M, the weight is:
W = M*g
where g is the gravitational acceleration: g = 9.8m/s^2
And the friction force between this object and the surface can be written as:
F = W*μ
where μ is the coefficient of friction (kinetic if the object is moving, and static if the object is not moving, usually the static coefficient is larger)
In this case, the weight is:
W = 20N
And the friction force is:
F = 12N
Replacing these values in the equation for the friction force we get:
12N = 20N*μ
(12N/20N) = μ = 0.6
The coefficient of kinetic friction is μ = 0.6
Answer:
(a) The constants required describing the rod's density are B=2.6 and C=1.325.
(b) The mass of the road can be found using 
Explanation:
(a) Since the density variation is linear and the coordinate x begins at the low-density end of the rod, we have a density given by

recalling that the coordinate x is measured in centimeters.
(b) The mass of the rod can be found by having into account the density, which is x-dependent, and the volume differential for the rod:
,
hence, the mass of the rod is 126.6 g.