Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.
The horizontal velocity<span> of a projectile is </span>constant<span> (a never </span>changing<span> in value), There is a </span>vertical<span>acceleration caused by gravity; its value is 9.8 m/s/s, down, The </span>vertical velocity<span> of a projectile </span>changes<span> by 9.8 m/s each second, The </span>horizontal<span> motion of a projectile is independent of its </span>vertical<span> motion.</span>
Answer: It is the same amount of weight as the girl is putting on the pogo stick. When you are pushing something downward then gravity will push back with the equal amount of force.
Explanation:
Answer:
Cruising at 35,000 feet in an airliner, straight toward the east,
at 500 miles per hour
Explanation: