Answer:A 2.2kg block of ice slides across a rough floor. Its initial velocity is 2.5m/s and its final velocity is 0.50m/s. How much of the ice block melted as a result of the work done by friction? (Latent Heat of water is 3.3*10^5J/kg)
Explanation:
Answer:
18.24 seconds
Explanation:
First you convert the km/h to m/s, 70km/h=(175/9)m/s,85km/h=(425/18)m/s.
You know it took 10 seconds for the police to reach 85 km/h. Calculate the distance that the car is ahead of the police (175/9)*10=1750/9m. Then by divide 1750/9 with 425/18, you will get the value 8.24. Add the 10 seconds with the 8.24 you will get 18.24 sec which is the total time.
-- The car starts from rest, and goes 8 m/s faster every second.
-- After 30 seconds, it's going (30 x 8) = 240 m/s.
-- Its average speed during that 30 sec is (1/2) (0 + 240) = 120 m/s
-- Distance covered in 30 sec at an average speed of 120 m/s
= <span> 3,600 meters .</span>
___________________________________
The formula that has all of this in it is the formula for
distance covered when accelerating from rest:
Distance = (1/2) · (acceleration) · (time)²
= (1/2) · (8 m/s²) · (30 sec)²
= (4 m/s²) · (900 sec²)
= 3600 meters.
_________________________________
When you translate these numbers into units for which
we have an intuitive feeling, you find that this problem is
quite bogus, but entertaining nonetheless.
When the light turns green, Andy mashes the pedal to the metal
and covers almost 2.25 miles in 30 seconds.
How does he do that ?
By accelerating at 8 m/s². That's about 0.82 G !
He does zero to 60 mph in 3.4 seconds, and at the end
of the 30 seconds, he's moving at 534 mph !
He doesn't need to worry about getting a speeding ticket.
Police cars and helicopters can't go that fast, and his local
police department doesn't have a jet fighter plane to chase
cars with.
It might be radiation and reflection but I’m not sure
Answer: J.J Thomson
Explanation: J. J. Thomson, who discovered the electron in 1897, proposed the plum pudding model of the atom in 1904 before the discovery of the atomic nucleus in order to include the electron in the atomic model.