The correct answer is: Average Power = 500 W
Explanation:
Root-mean square voltage = Vrms = Vpeak /√2 = 100 / √2 volts
Resistance = R = 10 Ω
Average power = Pavg = (Vrms)^2<span> / R </span>= (100 * 100) / (2 * 10) = <span>500 W</span>
Answer:
117.6°
Explanation:
The vertical component of a force directed at some angle α from the vertical is ...
F·cos(α)
We want the vertical components of the wolf's force (Fw) and Red's force (Fr) to total zero. So for some angle from vertical α, Red's force will satisfy ...
Fw·cos(25°) + Fr·cos(α) = 0
cos(α) = -Fw/Fr·cos(25°) ≈ -(6.4 N)/(12.5 N)·0.906308 ≈ -0.464030
α ≈ arccos(-0.464030) ≈ 117.6°
Red was pulling at an angle of about 117.6° from the vertical.
_____
<em>Additional comment</em>
That's about 27.6° below the horizontal.
For this problem, we use the Coulomb's law written in equation as:
F = kQ₁Q₂/d²
where
F is the electrical force
k is a constant equal to 9×10⁹
Q₁ and Q₂ are the charge of the two objects
d is the distance between the two objects
Substituting the values:
F = (9×10⁹)(-22×10⁻⁹ C)(-22×10⁻⁹ C)/(0.10 m)²
F = 0.0004356 N
Here, Initial momentum = mu = 6*2 = 12 Kg m/s
Final momentum = mv = 6*4 = 24 Kg m/s
In short, Your Answer would be Option C
Hope this helps!
Answer:
m = B²qR² / 2 V
Explanation:
If v be the velocity after acceleration under potential difference of V
kinetic energy = loss of electric potential energy
1/2 m v² = Vq ,
v² = 2 Vq / m ----------------------- ( 1 )
In magnetic field , charged particle comes in circular motion in which magnetic force provides centripetal force
magnetic force = centripetal force
Bqv = mv² / R
v = BqR / m
v² = B²q²R² / m² ------------------------- (2)
from (1) and (2)
B²q²R² / m² = 2 Vq / m
m = B²q²R² / 2 Vq
m = B²qR² / 2 V