Answer:
its speed is insignificant before the diver's speed change, so the result does not change
Explanation:
In this exercise of conservation of the momentum, the system is formed by the diver and the Earth
initial instant (before jumping)
p₀ = 0
final instant (after jumping)
= m v + M v²
how momentum is conserved
p₀ = p_{f}
0 = m v + M v²
v² = m / M v
since the mass of the Earth is M = 10²⁴ kg
its speed is insignificant before the diver's speed change, so the result does not change
Answer:
it will give one electron to the bromine atom, so the bromine atom will have 36 electrons. this is an ionic bonding
Explanation:
∆x (displacement) = v - u
where, v is the final position and u is the initial position.
Given, the final position of the object is 0 m and the initial position is 5 m.
∆x (displacement) = v - u
= 0 m - 5 m
= -5 m
Therefore, <u>C: -5m</u> is the correct answer.
After the great 1906 San Francisco earthquake, geolophysicistHarry Fielding Reid examined the displacement of the ground surface along the San Andreas Fault. He concluded that the quake must have been the result of the elastic reboundof the strain energy in the rocks on either side of the fault.
strain energy is 0. 5x force x (compression) X (compression)
There is a lot of force and a bit of compression when rocks squash up against other rocks causing earthquakes
Answer:
a) 14.2sec
b) 1394m away if horizontal speed never changes
c) 9.8m/s
Explanation: