This is problem of free falling
objects, which can be solved using the formula:
V = sqrt(2gy)
Where v is the velocity upon
impact
G is the acceleration due to
gravity ( 9.81 m/s2)
Y is the height
Since Venessa is 3.5 m
Y = 30 -3.5 = 26.5 m
V = sqrt(2 (9.81 m/s2) ( 26.5
m))
<span>V = 22.8 m/s</span>
1. Traveling by car means you have specific roads to follow. You won’t be able to go straight to Banning high from POLAHS. The 8.4km will be defined as distance. Traveling by helicopter you don’t have roads to follow that means you can fly directly to banning high. 6.8km will be defined as displacement.
2. A) 400m
B)0m
C)d=1/2(vi+vf)t
400=1/2(0+vf)92
8.7m/s
D) 0m/s
E) Not sure but instantaneous velocity refer to velocity at a given point. Average velocity is just the average. Usually instantaneous velocity won’t be same as the average velocity.
Plz like if it helped.
Answer:
a) 2.063*10^-4
b) 1.75*10^-4
Explanation:
Given that: d= 1.628 mm = 1.628 x 10-3 I= 12 mA = 12.0 x 10-8 A The Cross-sectional area of the wire is:
a) <em>The Potential difference across a 2.00 in length of a 14-gauge copper </em>
<em> wire: </em>
L= 2.00 m
From Table Copper Resistivity = 1.72 x 10-8 S1 • m The Resistance of the Copper wire is:
=0.0165Ω
The Potential difference across the copper wire is:
V=IR
=2.063*10^-4
b) The Potential difference if the wire were made of Silver: From Table: Silver Resistivity p= 1.47 x 10-8 S1 • m
The Resistance of the Silver wire is:
=0.014Ω
The Potential difference across the Silver wire is:
V=IR
=1.75*10^-4