1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vagabundo [1.1K]
3 years ago
8

Your friend wants to join the school track team, and has asked for your help to determine how fast she can run. What kind of inf

ormation would you need to collect to help your friend???
Physics
1 answer:
Zigmanuir [339]3 years ago
6 0

Answer:

you calculate a specific type of run for example 100m and it takes 20 seconds to finish and calculate the time it takes them to finish

hope this helps

have a good day :)

Explanation:

You might be interested in
What makes it possible for us to see the moon from earth?
DENIUS [597]
D. Light from the sun is reflected off the moon's surface
3 0
3 years ago
Which characeristic makes omasis different from diffusion.
Ksju [112]
 <span>haha I used to think biology was so hard, i find it quite easy now. 
Okay, so basically Osmosis is the movement of water molecules from a higher concentration to a lower concentration. Diffusion is generally the movement of a gradient from higher concentration to an area of lower concentration. Osmosis applies to water only, whereas diffusion, you have many types such as Passive transport [ movement of molecules from high- low, NO CELLULAR ENERGY needed! ] then you have faciliated diffusion ( basically uses a channel protein to allow big substances to go through the membrane : NO ENERGY needed] 
OSMOSIS, the important thing to remember is that water ALWAYS flow towards the region with the higher concentration of the solute (ex: Salt is solute, water is solvent) solute is the thing that is being dissolved. Solvent is the one doing the dissolving. Hope this helped!</span>
5 0
4 years ago
The deepest point in the ocean is 11 km below sea level, deeper than Mt. Everest is tall.
34kurt

The pressure at the depth 11 km below sea level can be calculated using

P=ρgh

P is pressure, ρ is the density of the fluid; g is the gravitational constant, h is the height from the surface, or depth that the object is submerged.

P = ( 1000 kg/ m3) ( 9.81 m.s2)( 11 000m) + 1 atm

P = 107,910,000 pa ( 1 atm/ 101 325 Pa) + 1 atm = 1066 atm

8 0
4 years ago
uniform disk with mass 40.0 kg and radius 0.200 m is pivoted at its center about a horizontal, frictionless axle that is station
Alex787 [66]

Answer:

The magnitude of the tangential velocity is v= 0.868 m/s

The magnitude of the resultant acceleration at that point is  a = 4.057 m/s^2

Explanation:

From the question we are told that

      The mass of the uniform disk is m_d = 40.0kg

       The radius of the uniform disk is R_d = 0.200m

       The force applied on the disk is F_d = 30.0N

Generally the angular speed i mathematically represented as

             w = \sqrt{2 \alpha  \theta}

Where \theta is the angular displacement given from the question as

           \theta  = 0.2000 rev = 0.2000 rev * \frac{2 \pi \ rad }{1 rev}

                 =1.257\  rad

   \alpha is the angular acceleration which is mathematically represented as

                    \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

    The moment of inertial is mathematically represented as

                     I = \frac{1}{2} m_dR^2_d

Substituting values

                    I = 0.5 * 40 * 0.200^2

                        = 0.8kg \cdot m^2

Considering the equation for angular acceleration

               \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

Substituting values

               \alph\alpha = \frac{(30.0)(0.200)}{0.8}

                   = 7.5 rad/s^2

Considering the equation for angular velocity

    w = \sqrt{2 \alpha  \theta}

Substituting values

     w =\sqrt{2 * (7.5) * 1.257}

         = 4.34 \ rad/s

The tangential velocity of a given point on the rim is mathematically represented as

                 v = R_d w

Substituting values

                    = (0.200)(4.34)

                     v= 0.868 m/s

The radial acceleration at hat point  is mathematically represented as

            \alpha_r = \frac{v^2}{R}

                  = \frac{0.868^2}{0.200^2}

                 = 3.7699 \ m/s^2

The tangential acceleration at that point is mathematically represented as

               \alpha _t = R \alpha

Substituting values

           \alpha _t = (0.200) (7.5)

                 = 1.5 m/s^2

The magnitude of resultant acceleration at that point is

                 a = \sqrt{\alpha_r ^2+ \alpha_t^2 }

Substituting values

                a = \sqrt{(3.7699)^2 + (1.5)^2}

                   a = 4.057 m/s^2

         

7 0
3 years ago
A gasoline tank has the shape of an inverted right circular cone with base radius 4 meters and height 5 meters. Gasoline is bein
RSB [31]

Answer:

h'=0.25m/s

Explanation:

In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).

So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of 8m^{3}/s. As you  may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:

V_{cone}=\frac{1}{3} \pi r^{2}h

notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.

If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:

\frac {r}{h}=\frac{4}{5}

When solving for r, we get:

r=\frac{4}{5}h

so we can substitute this into our volume of a cone formula:

V_{cone}=\frac{1}{3} \pi (\frac{4}{5}h)^{2}h

which simplifies to:

V_{cone}=\frac{1}{3} \pi (\frac{16}{25}h^{2})h

V_{cone}=\frac{16}{75} \pi h^{3}

So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:

\frac{dV}{dt}= \frac{16}{75} \pi (3)h^{2} \frac{dh}{dt}

Which simplifies to:

\frac{dV}{dt}= \frac{16}{25} \pi h^{2} \frac{dh}{dt}

So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)

So we get:

\frac{dh}{dt}= \frac{(dV/dt)(25)}{16 \pi h^{2}}

Now we can substitute the provided values into our equation. So we get:

\frac{dh}{dt}= \frac{(8m^{3}/s)(25)}{16 \pi (4m)^{2}}

so:

\frac{dh}{dt}=0.25m/s

3 0
3 years ago
Other questions:
  • At a depth of 10.9 km, the Challenger Deep in the Marianas Trench of the Pacific Ocean is the deepest site in any ocean. Yet, in
    14·2 answers
  • Which system protects us from radiation and the vacuum of space
    11·2 answers
  • A 2200 kg SUV traveling at 23.9 m/s can be stopped in 0.16 s if it hits a concrete wall. Assume that a 60 kg person was in the c
    5·1 answer
  • After the cart bounces, how far does it roll back up the ramp?
    12·1 answer
  • a jet fighter accelerates at 17.7 m/s^2 , increasing its velocity from 119 m/s to 233 m/s. how much time does that take?
    7·1 answer
  • Two students, standing on skateboards, are initially at rest, when they give each other a shove! After the shove, one student (7
    14·1 answer
  • The type of energy that depends on position is called
    12·2 answers
  • On a different day the same car enters a 420-m radius horizontal curve on a rainy day when the coefficient of static friction be
    5·1 answer
  • What is acceleration
    11·1 answer
  • How is energy transferred and transformed? and examples with full explanation.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!