1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya [120]
3 years ago
15

In December, why does the sun have a much lower azimuth?

Physics
1 answer:
patriot [66]3 years ago
5 0

Answer:

The earth is tilted away from the sun more, and the angular perspective someone has on it is lower, which contributes to the cooler temperatures.

(stg there is no plagiarism, you can search it up)

Explanation:

BRAINLIEST PLZ

You might be interested in
If we decrease the distance an object moves we will (2 points)
Fantom [35]
Decrease the amount of force applied
8 0
3 years ago
Read 2 more answers
For a given initial projectile speed Vo, calculate what launch angle A gives the longest range R. Show your work, don't just quo
pickupchik [31]
The optimal angle of 45° for maximum horizontal range is only valid when initial height is the same as final height. 

<span>In that particular situation, you can prove it like this: </span>

<span>initial velocity is Vo </span>
<span>launch angle is α </span>

<span>initial vertical velocity is </span>
<span>Vv = Vo×sin(α) </span>

<span>horizontal velocity is </span>
<span>Vh = Vo×cos(α) </span>

<span>total time in the air is the the time it needs to fall back to a height of 0 m, so </span>
<span>d = v×t + a×t²/2 </span>
<span>where </span>
<span>d = distance = 0 m </span>
<span>v = initial vertical velocity = Vv = Vo×sin(α) </span>
<span>t = time = ? </span>
<span>a = acceleration by gravity = g (= -9.8 m/s²) </span>
<span>so </span>
<span>0 = Vo×sin(α)×t + g×t²/2 </span>
<span>0 = (Vo×sin(α) + g×t/2)×t </span>
<span>t = 0 (obviously, the projectile is at height 0 m at time = 0s) </span>
<span>or </span>
<span>Vo×sin(α) + g×t/2 = 0 </span>
<span>t = -2×Vo×sin(α)/g </span>

<span>Now look at the horizontal range. </span>
<span>r = v × t </span>
<span>where </span>
<span>r = horizontal range = ? </span>
<span>v = horizontal velocity = Vh = Vo×cos(α) </span>
<span>t = time = -2×Vo×sin(α)/g </span>
<span>so </span>
<span>r = (Vo×cos(α)) × (-2×Vo×sin(α)/g) </span>
<span>r = -(Vo)²×sin(2α)/g </span>

<span>To find the extreme values of r (minimum or maximum) with variable α, you must find the first derivative of r with respect to α, and set it equal to 0. </span>

<span>dr/dα = d[-(Vo)²×sin(2α)/g] / dα </span>
<span>dr/dα = -(Vo)²/g × d[sin(2α)] / dα </span>
<span>dr/dα = -(Vo)²/g × cos(2α) × d(2α) / dα </span>
<span>dr/dα = -2 × (Vo)² × cos(2α) / g </span>

<span>Vo and g are constants ≠ 0, so the only way for dr/dα to become 0 is when </span>
<span>cos(2α) = 0 </span>
<span>2α = 90° </span>
<span>α = 45° </span>
4 0
3 years ago
A superconducting solenoid has 3300 turns per meter and can carry a maximum current of 4.1 ka. find the magnetic field strength
avanturin [10]
Hope this helps you.

7 0
3 years ago
Read 2 more answers
Three point charges have equal magnitudes, two being positive and one negative. These charges are fixed to the corners of an equ
Irina-Kira [14]

Answer:

Magnitude of the net force on q₁-

Fn₁=1403 N

Magnitude of the net force on q₂+

Fn₂= 810 N

Magnitude of the net force on q₃+

Fn₃= 810 N

Explanation:

Look at the attached graphic:

The charges of the same sign exert forces of repulsion and the charges of   opposite sign exert forces of attraction.

Each of the charges experiences 2 forces and these forces are equal and we calculate them with Coulomb's law:

F= (k*q*q)/(d)²

F= (9*10⁹*3*10⁻⁶*3*10⁻⁶)(0.01)² =810N

Magnitude of the net force on q₁-

Fn₁x= 0

Fn₁y= 2*F*sin60 = 2*810*sin60° = 1403 N

Fn₁=1403 N

Magnitude of the net force on q₃+

Fn₃x= 810- 810 cos 60° = 405 N

Fn₃y= 810*sin 60° = 701.5 N

Fn_{3} = \sqrt{405^{2}+701.5^{2}  }

Fn₃ = 810 N

Magnitude of the net force on q₂+

Fn₂ = Fn₃ = 810 N

6 0
3 years ago
An organ pipe open at both ends is 1.5 m long. A second organ pipe that is closed at one end and open at the other is 0.75 m lon
telo118 [61]

Answer:

A. 110Hz,220Hz, 330 Hz

Explanation:

for organ open at open both ends;

the length of the organ for the fundamental frequency, L = A---->N + N----->A

A---->N  = λ /4 and N----->A = λ /4

L = λ /4 + λ /4 = λ /2

L = \frac{\lambda}{2} \\\\\lambda = 2L

λ  = 2 x 1.5m = 3.0 m

Wave equation is given by;

V = Fλ

Where;

V is the speed of sound

F is the frequency of the wave

F = V/ λ

F₀ = V / 2L

Where;

F₀  is the fundamental frequency

F₀ = 330 / 2(1.5)

F₀ = 330 / 3

F₀ = 110 Hz

the length of the organ for the first overtone, L = A---->N + N----->A + A----->N +  N----->A

L = 4λ /4

L = λ

λ = 1.5 m

F₁ = 330 / 1.5

F₁ = 220 Hz

Thus, F₁ = 2F₀

For open organ at one end

the length of the organ for the fundamental frequency, L = N------A

L = λ /4

λ = 4L

F₀ = V/4L

F₀ = 330 / (4 x 0.75)

F₀ = 110 Hz

the length of the organ for the first overtone, L = N-----N + N-----A

L = λ/2 + λ / 4

L = 3λ /4

F₁ = 3F₀

F₁ = 3 x 110

F₁ = 330 Hz

Thus the fundamental frequency for both organs is 110 Hz,

The first overtone for the organ open at both ends is 220 Hz

The first overtone for the organ open at one end is 330 Hz

The correct option is "A. 110Hz,220Hz, 330 Hz"

6 0
3 years ago
Other questions:
  • What causes wind how does the process reverse itself between day and night?
    12·1 answer
  • In any energy transformation, there is always some energy that gets wasted as non-useful heat.
    8·2 answers
  • How is motors and generators alike
    8·1 answer
  • Which subatomic particle has a negative charge?
    5·1 answer
  • Some children are underfed and often have no place to sleep. According to
    10·1 answer
  • • List four uses of the concave mirror.<br> State five uses of lenses in everyday activities
    13·1 answer
  • Which two characteristics are important for soil or land that is used for farming ?
    6·2 answers
  • 2- A student ran 135 meters in 15 seconds. What was the student's velocity?
    12·1 answer
  • How much Gravitational Potential Energy does a 1.48 kg book at rest on top of a 2.4 m tall desk have?
    9·1 answer
  • What type of presentation us easier to plan using a site map?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!