Answer:
the free encyclopedia. In molecular geometry, bond length or bond distance is defined as the average distance between nuclei of two bonded atoms in a molecule. It is a transferable property of a bond between atoms of fixed types, relatively independent of the rest of the molecule.
Explanation:
Work with your units:
1 watt-hour = 1 (joule/second) · (hour) = 1 (joule-hour / second)
(1 joule-hour/sec) · (3600 sec/hour) = 3600 joules
So 1 watt-hour = 3,600 joules
Answer:
Saturn's differential rotation will cause the length of a day measures to be longer by 0.4 hours
Explanation:
Differential rotation occurs due to the difference in angular velocities of an object as we move along the latitude of the or as we move into different depth of the object, indicating the observed object is in a fluid form
Saturn made almost completely of gas and has differential motion given as follows
Rotation at the equator = 10 hours 14 minutes
Rotation at high altitude = 10 hours 38 minutes
Therefore;
The differential rotation = 10 hours 38 minutes - 10 hours 14 minutes
The differential rotation = 24 minutes = 24 minutes × 1 hour/(60 minutes) = 0.4 hours
The differential rotation = 0.4 hours
Therefore, the measured day at the higher altitude will be 0.4 longer than at the equator.
Answer:
angular acceleration is -0.2063 rad/s²
Explanation:
Given data
mass m = 95.2 kg
radius r = 0.399 m
turning ω = 93 rpm
radial force N = 19.6 N
kinetic coefficient of friction μ = 0.2
to find out
angular acceleration
solution
we know frictional force that is = radial force × kinetic coefficient of friction
frictional force = 19.6 × 0.2
frictional force = 3.92 N
and
we know moment of inertia that is
γ = I ×α = frictional force × r
so
γ = 1/2 mr²α
α = -2f /mr
α = -2(3.92) /95.2 (0.399)
α = - 7.84 / 37.9848 = -0.2063
so angular acceleration is -0.2063 rad/s²
The answer will be C, a stopwatch :)