Power = Work done / Time taken.
Work done = mgh
Mass, m = 33kg ( Am presuming it is 33 kg).
h = 85 m.
Work done = 33 * 9.81* 85 = 27517.05 J.
Time taken.
Since object was dropped from height, it fell under gravity.
Using H = ut + (1/2) * gt^2. u = 0.
H = 1/2 gt^2.
t = (2H/g) ^ (1/2)
t = (2*85/9.81) ^ 0.5 = 4.1628 s.
Power = 27517.05 / 4.1628 = 6610.23 Watts.
= 6610 W to 3 S. f.
Answer:
The correct option is (a).
Explanation:
We know that, the E is inversely proportional to the distance as follows :

We can write it as follows :

Put all the values,

So, the correct option is (a).
We can solve the problem by using Ohm's law, which states that an Ohmic conductor the following relationship holds:

where

is the potential difference applied to the resistor
I is the current flowing through it
R is the resistance
In our problem, I=4.00 A and

, so the potential difference is
Battery capacity (AH) is defined as a product of the current that is drawn from the battery while the battery is able to supply the load until its voltage is dropped to lower than a certain value for each cell.
Answer:
End product of photosynthesis.
Explanation:
Photosynthesis is a process that plants undergo in the manufacture of their food. This is done in the presence of sunlight which is trapped by their coloring pigment called chlorophyll and reactants such as Carbon dioxide and Water.
6CO2+6H2O= C6H12O6+ 6O2
The oxygen gas which is a waste product of photosynthesis is released into the atmosphere and used by animals in respiration.