Answer:
Time = 0.58 seconds
Explanation:
Given the following data;
Initial momentum = 3 kgm/s
Final momentum = 10 kgm/s
Force = 12 N
To find the time required for the change in momentum;
First of all, we would determine the change in momentum.


Change in momentum = 7 kgm/s
Now, we can find the time required;
Note: the impulse of an object is equal to the change in momentum experienced by the object.
Mathematically, impulse (change in momentum) is given by the formula;

Making "time" the subject of formula, we have;

Substituting into the formula, we have;

Time = 0.58 seconds
Answer:(A-P,S;B-P,S;C-Q,S;D-P,S)
Solution
(A)→P,S,(B)→P,S,(C)→Q,S,(D)→P,S.
Explanation:
The answer would be number four. I'm sorry if I am too late. Byes.....
The period of a pendulum is given by

where L is the pendulum length and g is the gravitational acceleration.
We can write down the ratio between the period of the pendulum on the Moon and on Earth by using this formula, and we find:

where the labels m and e refer to "Moon" and "Earth".
Since the gravitational acceleration on Earth is

while on the Moon is

, the ratio between the period on the Moon and on Earth is
Answer:
Gravitational Potential Energy = mgh
Explanation:
As the miner moves down, the GPE changes because the height changes.
Gravitational Potential Energy = mgh