1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kramer
3 years ago
6

A force of 12 N changes the momentum of a toy car from 3kgm/s t0 10kgm/s. Calculate the time the force took to produce this chan

ge in momentum.
Physics
1 answer:
yan [13]3 years ago
6 0

Answer:

Time = 0.58 seconds

Explanation:

Given the following data;

Initial momentum = 3 kgm/s

Final momentum = 10 kgm/s

Force = 12 N

To find the time required for the change in momentum;

First of all, we would determine the change in momentum.

Change \; in \; momentum = final \; momentum - initial \; momentum

Change \; in \; momentum = 10 - 3

Change in momentum = 7 kgm/s

Now, we can find the time required;

Note: the impulse of an object is equal to the change in momentum experienced by the object.

Mathematically, impulse (change in momentum) is given by the formula;

Impulse = force * time

Making "time" the subject of formula, we have;

Time = \frac {impulse}{force}

Substituting into the formula, we have;

Time = \frac {7}{12}

Time = 0.58 seconds

You might be interested in
A small circular coil of 5 turns of wire lies in a uniform magnetic field of 0.8 T, so that the normal to the plane of the coil
Travka [436]

Complete question:

A small circular coil of 5 turns of wire lies in a uniform magnetic field of 0.8 T, so that the normal to the plane of the coil makes an angle of 100◦ with the direction of B~ . The radius of the coil is 4 cm, and it carries a current of 1 A.

What is magnitude of the magnetic moment of the coil? Answer in units of A · m2.

Answer:

The magnetic moment of the coil is 0.0252 A.m²

Explanation:

Given;

radius of the coil, r = 4 cm = 0.04 m

number of turns of the coil, N = 5 turns

magnetic field strength B = 0.8 T

current in the coil, I = 1 A

Area of the coil, A = πr² = π(0.04)² = 0.00503 m²

magnetic moment of the coil, μ = NIA

where;

N is the number of turns

I is the current in the coil

A is the area of the coil

magnetic moment of the coil, μ = 5 x 1 x 0.00503 = 0.0252 A.m²

Therefore, the magnetic moment of the coil is 0.0252 A.m²

8 0
3 years ago
PLEASE HELP!!! WILL MARK THE BRAINLIEST! HIGH SCHOOL PHYSICAL SCIENCE List the independent, dependent, controlled variables of t
serious [3.7K]

Answer:

Explanation:

You didn't last any of the variables. You have to list the variables to tell which are which.

3 0
3 years ago
Read 2 more answers
What does hydraulic mean?
Harrizon [31]

Answer:

denoting, relating to, or operated by a liquid moving in a confined space under pressure.

4 0
2 years ago
Elements with positive valences usually ______ electrons
Leno4ka [110]
The answer is donate, therefore elements with positive valences usually donate electrons
7 0
2 years ago
A baseball rolls off a 1.20m high desk and strikes the floor 0.50m away from the base of the desk . How fast was it rolling?
noname [10]

The initial velocity of the ball is 1.01 m/s

Explanation:

The motion of the ball rolling off the desk is a projectile motion, which consists of two independent motions:

- A uniform horizontal motion with constant horizontal velocity

- A vertical accelerated motion with constant acceleration (g=9.8 m/s^2, acceleration due to gravity)

We start by analyzing the vertical motion: we can find the time of flight of the ball by using the following suvat equation

s=ut+\frac{1}{2}gt^2

where

s = 1.20 m is the vertical displacement (the height of the desk)

u = 0 is the initial vertical velocity

g=9.8 m/s^2

t is the time of flight

Solving for t,

t=\sqrt{\frac{2s}{g}}=\sqrt{\frac{2(1.20)}{9.8}}=0.495 s

Now we analyze the horizontal motion. We know that the ball covers a horizontal distance of

d = 0.50 m

in a time

t = 0.495 s

Therefore, since the horizontal velocity is constant, we can calculate it as

v_x = \frac{d}{t}=\frac{0.50}{0.495}=1.01 m/s

So, the ball rolls off the table at 1.01 m/s.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • A swimming pool contains x (less than 0.02) grams of chlorine per cubic meter. the pool measures 5 meters by 50 meters and is 2
    5·1 answer
  • What unit is electronegativity measured in?
    5·1 answer
  • A river flows from south to north at 5.4 km/hr. on the west bank of this river, a boat launches and travels perpendicular to the
    5·1 answer
  • Problem 6: A rocket accelerates upward from rest, due to the first stage, with a constant acceleration of a1 = 94 m/s2 for t1 =
    11·1 answer
  • Calculate the moment of inertia for a solid cylinder with a mass of 100g and a radius of 4.0 cm
    14·2 answers
  • Joe leans against a lamppost with a force of 200 N. The lamppost does not move. How much work does he do?
    8·1 answer
  • a street light is mounted at the top of a 15 foot pole. A man 6 ft tall walks away from the pole wit a speed of 7 ft/s along a s
    8·1 answer
  • ________________ happens when two waves pass through each other and combine.
    15·1 answer
  • A pendulum is in a spacecraft to measure
    15·1 answer
  • What type of tissue in the heart pumps blood throughout the body?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!