Answer:
v= 103.5 V; energy =1.65 x 10^-17
Explanation:
the deflected energy eV sin θ
Answer:
good morning mam going nme mam morning mam going on in the correct
Answer:
147.456077993 Hz
Explanation:
= Frequency of the sonar = 22 kHz
= Velocity of the whale = 4.95 m/s
v = Speed of sound in water = 1482 m/s
The difference in frequency is given by

The difference in frequency is 147.456077993 Hz
Answer:
The emission spectrum is always the same and can be used to identify the element and part of the Bohr model proposed that electrons in the hydrogen are located in particular orbits around the nucleos are True.
Explanation:
The Niels Bohr and quantic mecanic theorys are both based on the study of atomics spectrums. The atomic spectrum is a characteristic pattern of a light wavelenght emited wich is unique to each element.
<u>For example</u>, if we put some low pressure hydrogen in a glass tube and in the tp of the glass we apply a voltage big enough to produce a electric current in the hydrogen gas, the tube its going to emit light wich have a color dependig of the gas element in the interior. If we observe this light with a spectrometer we are going to see shining lines and each one of this lines have a wavelenght and diferent colors. This lines are called emission spectrum and the wavelength of that spectrum are unique to eache element.
<u>Summering up, </u>we can identify elements using the emission spectrum because any element produces the same spectrum than other element.
According to Niels Bhor theory the electron only can be in especific discret ratios to the nucleus. Where this electron moves himself in circukar orbits under the influence of the Coulomb attraction force.
Answer:
Transverse wave- Back and forth at right angles to the direction of the wave arrow.
longitudinal wave- bask and forth in the direction of the motion of the motion of the wave.
electromagnetic wave- two alternating waves moving at right angles to each other.
Explanation:
In a longitudinal wave, the particles vibrate at right angles in reference to the wave motion.
In a transverse wave, the particles vibrate parallel to the wave motion
Electromagnetic waves occur as a result of the interaction between two waves and are normally transverse in nature.