Voltage, V = IR
Where I is current in Ampere, R is Resistance in Ohms.
V = 9A * 43 Ω
V = 387 V
Answer:
Probability of tunneling is 
Solution:
As per the question:
Velocity of the tennis ball, v = 120 mph = 54 m/s
Mass of the tennis ball, m = 100 g = 0.1 kg
Thickness of the tennis ball, t = 2.0 mm = 
Max velocity of the tennis ball,
= 89 m/s
Now,
The maximum kinetic energy of the tennis ball is given by:

Kinetic energy of the tennis ball, KE' = 
Now, the distance the ball can penetrate to is given by:


Thus



Now,
We can calculate the tunneling probability as:



Taking log on both the sides:


Answer:

Given:
Force = 8 N
Distance covered by the body = 50 cm = 0.5 m
Explanation:
Work Done = Force × Distance covered by the body
= 8 × 0.5
= 4 J
We make a graphic of this problem to define the angle.
The angle we can calculate through triangle relation, that is,

With this function we should only calculate the derivate in function of c

That is the rate of change of
.
b) At this point we need only make a substitution of 0 for c in the equation previously found.

Hence we have finally the rate of change when c=0.