Answer:
one advantage of KLO3 as a primary standard is that it is used to know concentration of a solution.
Explanation:
The reaction provides confirmation that the solution is at a specific concentration. Primary standards are often used to make standard solutions (a solution with a precisely known concentration
Answer:
4.823 x 10^-19 J
Explanation:
Energy is calculated by E = hv where h - Planck's constant in joule.s
v - frequency.
in this particular question the wave length is 4.12 x 10^-7 m. to exhaustively use this we need a relation between wave length & frequency. c=wv where C is approximately 3 x 10^8m/s
-v = c/w = 3x10^8m/s / 4.12 x 10^-7m = 7.28 x 10^14 Hz or 1/sec
now we can simply use Planck's constant in E=hv =
(6.626 x 10^-34) x (7.28 x 10^14Hz) = 4.823 x 10^-19 J.
Answer:

Explanation:
Volume of a cone:
We have
and we want to find
when the height is 2 cm.
We can see in our equation for the volume of a cone that we have three variables: V, r, and h.
Since we only have dV/dt and dh/dt, we can rewrite the equation in terms of h only.
We are given that the height of the cone is 1/5 the radius at any given time, 1/5r, so we can write this as r = 5h.
Plug this value for r into the volume formula:
Differentiate this equation with respect to time t.
Plug known values into the equation and solve for dh/dt.
Divide both sides by 100π to solve for dh/dt.
The height of the cone is increasing at a rate of 1/10π cm per second.
Answer:
[Br₂] = 1.25M
Explanation:
2NO (g) + Br₂ (g) ⇄ 2NOBr (g)
Eq 0.80M ? 0.80M
That's the situation told, in the statement.
Let's make the expression for Kc
Kc = [NOBr]² / [Br₂] . [NO]²
Kc = 0.80² / [Br₂] . [0.80]²
0.80 = 1 / [Br₂]
[Br₂] = 1 / 0.80 → 1.25
Answer:
105.9888 g/mol
Explanation:
The molar mass of sodium carbonate is 105.9888 g/mol (grams per mole)