Answer:
Partial pressure of He = 73 kPa
Explanation:
Given:
Total pressure = 125 kPa
Partial pressure of Ne = 31 kPa
Partial pressure of Kr = 21 kPa
Find:
Partial pressure of He
Computation:
Total pressure = Partial pressure of Ne + Partial pressure of Kr + Partial pressure of He
125 kPa = 31 kPa + 21 kPa + Partial pressure of He
Partial pressure of He = 73 kPa
Exothermic change. Because the firework when it exploded, released energy in the form of light. In exothermic changes energy is released, and in endothermic changes energy is absorbed.
- This wouldn't be a physical change, but instead a chemical change. A clue that it is a chemical change is that energy was given off.
The time taken for the object to reach to top of pile is 0.012 year.
<h3>Time of motion </h3>
The time taken for the object to reach to top of pile is calculated as follows;
time of motion = distance traveled/speed
time of motion = (1.1 x 10¹⁴ x 10³ m)/(3 x 10⁸ m/s)
where;
- speed of light = 3 x 10⁸ m/s
time of motion = 3.67 x 10⁵ sec = 0.012 year
Thus, the time taken for the object to reach to top of pile is 0.012 year.
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
Neutralization is the process in which anacid and base react to give salt and water
Answer:
20.3 kJ of heat is absorbed when 9.00 g of steam condenses to liquid water.
Explanation:
Heat is being consumed during vaporization and heat is being released during condensation.
To vaporize 1 mol of water, 40.66 kJ of heat is being consumed.
Molar mass of water = 18.02 g/mol
Hence, to vaporize 18.02 g of water , 40.66 kJ of heat is being consumed.
So, to vaporize 9.00 g of water,
of heat or 20.3 kJ of heat is being consumed
As condensation is a reverse process of vaporization therefore 20.3 kJ of heat is absorbed when 9.00 g of steam condenses to liquid water.