Answer:
K3PO4
Explanation:
Recall that colligative properties depends on the number of particles present. The greater the number of particles present, the greater the degree of colligative properties of the solution. Let us look at each option individually;
SrCr2O7-------> Sr^2+ + Cr2O7^2- ( 2 particles)
C4H11N (not ionic in nature hence it can not dissociate into ions)
K3PO4-------> 3K^+ + PO4^3- (4 particles)
Rb2CO3-------> 2Rb^+ + CO3^2- (3 particles)
Hence K3PO4 has the greatest number of particles and will display the greatest colligative effect.
The other gas which the article mentioned is Helium gas.
<h3>What is Compression?</h3>
This refers to the squeezing or shortening of a substance which is most often done by increasing the temperature.
The information scientists hope to gain by compressing this gas into a solid is by studying the molecular structures and using it in the production of other substances which is why Nitrogen and Helium are the gases being studied in this scenario.
Read more about Compression here brainly.com/question/17266589
The question is incomplete, the complete question is;
Why is a terminal alkyne favored when sodium amide (NaNH2) is used in an elimination reaction with 2,3-dichlorohexane? product. A) The terminal alkyne is more stable than the internal alkyne and is naturally the favored B) The terminal alkyne is not favored in this reaction. C) The resonance favors the formation of the terminal rather than internal alkyne. D) The strong base deprotonates the terminal alkyne and removes it from the equilibrium.
E) The positions of the Cl atoms induce the net formation of the terminal alkyne.
Answer:
E) The positions of the Cl atoms induce the net formation of the terminal alkyne.
Explanation:
In this reaction, sterric hindrance plays a very important role. We know that sodamide is a strong base, it tends to attack at the most accessible position.
The first deprotonation yields an alkene. The strong base attacks at the terminal position again and yields the terminal alkyne. Thus the structure of the dihalide makes the terminal hydrogen atoms most accessible to the base. Hence the answer.
True !! size dependent properties state is only one of the many physical properties of matter some physical properties such as massive value depending on the size or the amount measures of these properties very depending on how much matter is in a sample.