Answer:
t = 1.27 x 10⁹ s
Explanation:
First, we will find the volume of the wire:
Volume = V = AL
where,
A = Cross-sectional area of wire = πr² = π(1 cm)² = π(0.01 m)² = 3.14 x 10⁻⁴ m²
L = Length of wire = 150 km = 150000 m
Therefore,
V = 47.12 m³
Now, we will find the number of electrons in the wire:
No. of electrons = n = (Electrons per unit Volume)(V)
n = (8.43 x 10²⁸ electrons/m³)(47.12 m³)
n = 3.97 x 10³⁰ electrons
Now, we will use the formula of current to find out the time taken by each electron to cross the wire:
where,
t = time = ?
I = current = 500 A
q = total charge = (n)(chareg on one electron)
q = (3.97 x 10³⁰ electrons)(1.6 x 10⁻¹⁹ C/electron)
q = 6.36 x 10¹¹ C

Therefore,
<u>t = 1.27 x 10⁹ s</u>
It would take you 5.61 seconds to reach that velocity
Photosynthesis is a good one you can really explain with pictures
Average speed =
(total distance)/(total time)
Average speed = (99+90)/(2+3)
That's (189 km) / (5 hr)
Average speed = 37.8 km/hr
Answer:
Power output: W=1426.9MW
Explanation:
The power output of the falls is given mainly by its change in potential energy:

The potential energy for any point can be calculated as:

If we consider the base of the falls to be the reference height, at point 2 h=0, so P2=0, and height at point 1 equals 52m:

If we replace m with the mass rate M we obtain the rate of change in potential energy over time, so the power generated:
