Answer:
The Starship Enterprise is powered by combining matter with antimatter. Suppose 1 kg of each are combined and ejected backward at the speed of light, what is the final speed of the Enterprise starting from rest? Assume that the mass of the Enterprise is 10,000 kg and the spaceship does not reach relativistic speed.
It is a chemical change. I always think of a chemical/physical change as if you could reverse it back as it started off, for example if you stepped on a can you can reverse the can back probably not exactly like it was before but you can still reverse it so this would be a physical change, and if you baked a pizza you could not reverse the dough and everything else back.
Setting up an integral of
rotation is used as a method of of calculating the volume of a 3D object formed
by a rotated area of a 2D space. Finding the volume is similar to finding the
area, but there is one additional component of rotating the area around a line
of symmetry.
<span>First the solid of revolution
should be defined. The general function
is y=f(x), on an interval [a,b].</span>
Then the curve is rotated
about a given axis to get the surface of the solid of revolution. That is the
integral of the function.
<span>It all depends of the
function f(x), which must be known in order to calculate the integral.</span>
The type of pollution when small particles of soil are suspended in the water is called Suspended Matter Pollution. <span>This type of pollution happens when soil enter the water and do not mix in with the water molecules.</span>
Answer:
It depends on the product of their mass and velocity
Explanation:
The momentum of a moving object is defined as the product of its mass and its moving velocity. So a same object would have larger momentum it's traveling faster, or gets heavier, and vice versa. In our case we don't have the exact value of speed and mass of both objects so we can't say which one has a greater momentum.