Answer:
The resultant force would (still) be zero.
Explanation:
Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.
In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.
By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.
When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.
However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.
There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.
You need to figure out t4 to know the tension in the string.
Since the whole thing is not moving t1 + t2 + t3 = t4.
torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)
t1 =3.2 * 44g
t2 = 7 * 49g
t3 = 3.5 * 24g
t4 = t1 + t2 + t3 = 5570,118
The t4 also is given by:
t4 = r * T * sin Ф
r = 7
Ф = 32°
T: tension in the string
T = t4 / (r * sinФ)
T = t4 / (7 * sin(32°))
T = 1501,6 N
I believe it’s C. Plane .
(a) The time the baseball spends in the air is 0.92 s.
(b) The horizontal distance from the roof edge to the point where the baseball lands on the ground is 3.1 m.
<h3>
Time spent in air by the baseball</h3>
h = vt - ¹/₂gt²
-2.1 = (4.05 x sin 34)t - ¹/₂(9.8)(t²)
-2.1 = 2.26t - 4.9t²
4.9t² - 2.26t - 2.1 = 0
t = 0.92 s
<h3>Horizontal distance traveled by the baseball</h3>
R = Vx(t)
R = (4.05 x cos 34)(0.92)
R = 3.1 m
Thus, the time the baseball spends in the air is 0.92 s.
The horizontal distance from the roof edge to the point where the baseball lands on the ground is 3.1 m.
Learn more about horizontal distance here: brainly.com/question/24784992
#SPJ1
Answer:
a)
, b) 
Explanation:
a) The maximum possible acceleration that the truck can give to the SUV is:


b) The equation of equilibrium for the truck is:

The force of the SUV's bumper on the truck's bumper is:
