Add up the lengths of the several sides of the polygon.
Examples: The perimeter of a triangle is the sum of the lengths of the 3 sides.
The perimeter of a hexagon is the sum of the lengths of the 6 sides.
And so on.
I highly recommend drawing any polygon whose perimeter you wish to calculate.
Answer:
The only non-zero fixed point is: x = 9/A.
The Step-by-step explanation:
A fixed point of a function is a points that is mapped to itself by the function; g(x) = x. Therefore, in order to find the fixed point of the given function we need to solve the following equation:
g(x) = x
x(10 - Ax) = x
10x - Ax² = x
10x - x -Ax² = 0
9x - Ax² = 0
Ax² - 9x = 0
The solutions of this second order equation are:
x = 0 and x = 9/A.
Since we are only asked for the non-zero fixed points, the solution is: 9/A.
Answer:
y =74x
Step-by-step explanation:
A proportional relationship is represented by y = kx where x is the independent variable, or input, k is the constant of proportionality, and y is the dependent variable or output.
What do we do to the values in the row for x to get the values in the row of y?
It helps to have x = 1 in this table.
74 = (k)(1)
74 = k
The <span>given the piecewise function is :
</span>
![f(x) = \[ \begin{cases} 2x & x \ \textless \ 1 \\ 5 & x=1 \\ x^2 & x\ \textgreater \ 1 \end{cases} \]](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5C%5B%20%5Cbegin%7Bcases%7D%20%0A%20%20%20%20%20%202x%20%26%20x%20%5C%20%5Ctextless%20%5C%20%201%20%5C%5C%0A%20%20%20%20%20%205%20%26%20x%3D1%20%5C%5C%0A%20%20%20%20%20%20x%5E2%20%26%20x%5C%20%5Ctextgreater%20%5C%201%20%0A%20%20%20%5Cend%7Bcases%7D%0A%5C%5D)
To find f(5) ⇒ substitute with x = 5 in the function → x²
∴ f(5) = 5² = 25
To find f(2) ⇒ substitute with x = 5 in the function → x²
∴ f(2) = 2² = 4
To find f(-2) ⇒ substitute with x = 5 in the function → 2x
∴ f(-2) = 2 * (-2) = -4
To find f(1) ⇒ substitute with x = 1 in the function → 5
∴ f(1) = 5
================================
So, the statements which are true:<span>

</span><span>
</span>
No the don't add up to one eighty I'm pretty sure if not tell me