You can use Le Chatelier's Principle to describe the equilibrium shift.
Le Chaterlier's Principle states that: "<span>If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to counteract the change."
Thus, if you heat up the reaction, the equilibrium shift favors the endothermic reaction. If you increase pressure (if gases are involved), the shift favors the reaction that produces less gaseous products (to counteract pressure) and so on.</span>
Answer:
The answer is 20 % V/V
Explanation:
We use this formula for calculate the %V/V:
%V/V= (ml solute/ml solution) x 100= (75ml/375 ml)x 100 = 20 % V/V
<em>The% V / V represents the amount of ml of solute dissolved in 100 ml of solution</em>
Answer:
3.74 M
Explanation:
We know that molarity is moles divided by liters. The first thing to do here is convert your 1500 mL of solution to L. There's 1,000 mL in 1 L, so you need to divide 1500 by 1000:
1500 ÷ 1000 = 1.50
Now you can plug your values into the equation for molarity:
5.60 mol ÷ 1.50 L = 3.74 M
There are eight bonded electrons in this molecule! :)
Ag+ and Pb+2 are two cations that are suggested as producing insoluble halide salts when studying salts containing the halide anions, cl- and br-. First, the charge's number is provided.
Neutral binary salts, also referred to as halide salts, are mixtures of metals and non-metals. The non-metal behaves in a reduced oxidation state at all times. They are the outcome of mixing a hydroxide and hydracid. halide salts of haloids are produced by the reaction of a hydroxide and a hydracid.
Ions are cations with positive charges. They emerge when the electrons of an elemental metal are lost. However, they don't lose any protons; they only lose one or more electrons. To denote a cation, the charge is superscripted following the element name or chemical formula.
Learn more about halide salts here
brainly.com/question/20815131
#SPJ4