Answer:
C. Mutations are a change in DNA or a chromosome and can be helpful, harmful or may have no affect.
Explanation:
- Mutations are spontaneous random changes that occurs in the genetic make up of an organisms. Mutations are rare and their rate of occurrence is random.
- Mutations may occur on the gene level known as gene mutations or at chromosome levels called chromosomal mutations.
- Mutations may be beneficial, harmful or have no effect on a given organisms. Harmful mutations cause disorders that may lead to abnormality or death of an organisms. Beneficial mutations improve an organisms adaptability to the environment.
Answer:
zncl2. . . . . . . . . . . . . . . .
Explanations:- Part 1: We could count the total number of electrons by looking at the electron configurations. Both of these electrons configurations have 47 electrons. If we look at the periodic table then 47 is the atomic number of silver. So, the name of the element is silver and its represented as Ag.
Part 2: As per the rule, Completely filled and half filled orbitals are more stable. First electron configuration has 9 electrons in 4d and we know that d is more stable if it has 5 electrons(half filled) or it has 10 electrons(full filled).
For stability reasons, one of the electron from 5s goes to 4d and for this reason the second electron configuration is found most often in nature for silver.
Few other examples are Cr and Cu.
Answer:
ΔH = -470.4kJ
Explanation:
It is possible to sum 2 or more reactions to obtain the ΔH of the reaction you want to study (Hess's law). Using the reactions:
1. CaC2(s) + 2H2O(l) → C2H2(g) + Ca(OH)2(s)ΔH = −414kJ
2. 6C2H2(g) + 3CO2(g) + 4H2O(g) → 5CH2CHCO2H(g)ΔH = 132kJ
6 times the reaction 1.
6CaC2(s) + 12H2O(l) → 6C2H2(g) + 6Ca(OH)2(s)ΔH = −414kJ*6 = -2484kJ
This reaction + 2:
6CaC2(s) + 3CO2(g) + 16H2O(l) → + 6Ca(OH)2(s) + 5CH2CHCO2H(g) ΔH = -2484kJ + 132kJ = -2352kJ
As we want to calculate the net change enthalpy in the formation of just 1 mole of acrylic acid we need to divide this last reaction in 5:
6/5CaC2(s) + 3/5CO2(g) + 16/5H2O(l) → + 6/5Ca(OH)2(s) + CH2CHCO2H(g) ΔH = -2352kJ / 5
<h3>ΔH = -470.4kJ</h3>
Answer:
1 and 2
Explanation:
when we r adding chlorine to water
the water is clean