No spacecraft has been built yet that was able to absorb harmful
radiations in space, change weather conditions on Earth, or destroy
meteors and comets which might strike Earth.
We should continue to send robotic spacecrafts into space
because they help discard some myths about objects in space.
In other words, they help us learn things that we never knew before.
Electromagnetic radiation are represented in waves. Each type of wave has a certain shape and length. The distance between two peaks in a wave is called the wavelength. This value is equal to the speed of light divided by the frequency.
Wavelength = c/f
Wavelength = 3x10^8 / <span>5.42x10^15
</span><span>Wavelength = 5.54 x 10^-8 m = 55.35 nm</span>
Taking specific heat of lead as 0.128 J/gK = c
We have energy of ball at 7.00 meter height = mgh = 
When leads gets heated by a temperature ΔT energy needed = mcΔT
=
ΔT
Comparing both the equations
=
ΔT
ΔT = 0.536 K
Change in temperature same in degree and kelvin scale
So ΔT = 0.536 
A "screen" or even just a set of parallel bars are highly reflective to electromagnetic waves as long as the open spaces are small compared to the wavelengths.
"Grid" dishes work fine ... with less weight and less wind resistance ... for frequencies below about 3 GHz. (Wavelengths of at least 10 cm.)
(I even worked on a microwave system in South America where huge grid dishes were used on a 90-mile link.)