The simple answer would be; closeness to the equator combined with general climate.
- Angle (θ) = 60°
- Force (F) = 20 N
- Distance (s) = 200 m
- Therefore, work done
- = Fs Cos θ
- = (20 × 200 × Cos 60°) J
- = (20 × 200 × 1/2) J
- = (20 × 100) J
- = 2000 J
<u>Answer</u><u>:</u>
<u>2</u><u>0</u><u>0</u><u>0</u><u> </u><u>J</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:4-strikes the plane at same time as the other body
Explanation:
Given
If both bodies is falling on a horizontal plane and second body is given an acceleration in horizontal direction then it does not change the time to reach the Horizontal Plate as there is no change in vertical direction.
Horizontal acceleration will give only horizontal range and horizontal velocity.
Answer:
i. The radius 'r' of the electron's path is 4.23 ×
m.
ii. The frequency 'f' of the motion is 455.44 KHz.
Explanation:
The radius 'r' of the electron's path is called a gyroradius. Gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field.
r = 
Where: B is the strength magnetic field, q is the charge, v is its velocity and m is the mass of the particle.
From the question, B = 1.63 ×
T, v = 121 m/s, Θ =
(since it enters perpendicularly to the field), q = e = 1.6 ×
C and m = 9.11 ×
Kg.
Thus,
r =
÷ sinΘ
But, sinΘ = sin
= 1.
So that;
r = 
= (9.11 ×
× 121) ÷ (1.6 ×
× 1.63 ×
)
= 1.10231 ×
÷ 2.608 × 
= 4.2266 ×
= 4.23 ×
m
The radius 'r' of the electron's path is 4.23 ×
m.
B. The frequency 'f' of the motion is called cyclotron frequency;
f = 
= (1.6 ×
× 1.63 ×
) ÷ (2 ×
× 9.11 ×
)
= 2.608 ×
÷ 5.7263 × 
= 455442.4323
f = 455.44 KHz
The frequency 'f' of the motion is 455.44 KHz.