1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
3 years ago
7

The way that a plant grows in response to touch is called _______.

Chemistry
2 answers:
julsineya [31]3 years ago
6 0
Hello!

The answer is A.

<span>thigmotropism is the way that a plant grows in response to touch.

Have a nice day :D
</span>
snow_lady [41]3 years ago
5 0
Its called Thigmotropism ''A''
You might be interested in
What happens to a substance when it dissolves​
uranmaximum [27]

Answer:

A solution is made when one substance called the solute "dissolves" into another substance called the solvent.

Explanation:

once it is broken down"dissolves" from bigger pieces it becomes much smaller groups

6 0
3 years ago
The following reactions can be used to prepare samples of metals. Determine the enthalpy change under standard state conditions
mamaluj [8]

Answer:

a) 62.1 kJ/mol

b) 2.82 kJ/mol

c) 270.91 kJ/mol

d) -851.5 kJ/mol

Explanation:

The enthalpy change for a reaction in standard conditions (ΔH°rxn) can be calculated by:

ΔH°rxn = ∑n*ΔH°f, products - ∑n*ΔH°f, reagents

Where n is the number of moles in the stoichiometry reaction, and ΔH°f is the enthalpy of formation at standard conditions. ΔH°f = 0 for substances formed by only a single element. The values can be found in thermodynamics tables.

a) 2Ag₂O(s) → 4Ag(s) + O₂(g)

ΔH°f, Ag₂O(s) = -31.05 kJ/mol

ΔH°rxn = 0 - (2*(-31.05)) = 62.1 kJ/mol

b) SnO(s) + CO(g) → Sn(s) + CO₂(g)

ΔH°f,SnO(s) = -285.8 kJ/mol

ΔH°f,CO(g) = -110.53 kJ/mol

ΔH°f,CO₂(g) = -393.51 kJ/mol

ΔH°rxn = [-393.51] - [-110.53 - 285.8] = 2.82 kJ/mol

c) Cr₂O₃(s) + 3H₂(g) → 2Cr(s) + 3H₂O(l)

ΔH°f,Cr₂O₃(s) = -1128.4 kJ/mol

ΔH°f,H₂O(l) = -285.83 kJ/mol

ΔH°rxn = [3*(-285.83)] - [( -1128.4)] = 270.91 kJ/mol

d) 2Al(s) + Fe₂O₃(s) → Al₂O₃(s) + 2Fe(s)

ΔH°f,Fe₂O₃(s) = -824.2 kJ/mol

ΔH°f,Al₂O₃(s) = -1675.7 kJ/mol

ΔH°rxn = [-1675.7] - [-824.2] = -851.5 kJ/mol

3 0
3 years ago
Identify the correct coefficients to balance the redox reaction with the lowest possible integer coefficients.
Monica [59]

Answer:

\rm 3\; Ag^{1+} + 1\; Al \to 1\; Al^{3+} + 3\; Ag.

Explanation:

Electrons are conserved in a chemical equation.

The superscript of \rm Ag^{1+} indicates that each of these ions carries a charge of +1. That corresponds to the shortage of one electron for each \rm Ag^{+} ion.

Similarly, the superscript +3 on each \rm Al^{3+} ion indicates a shortage of three electrons per such ion.

Assume that the coefficient of \rm Ag^{+} (among the reactants) is x, and that the coefficient of \rm Al^{3+} (among the reactants) is y.

\rm \mathnormal{x}\; Ag^{1+} + ?\; Al \to \mathnormal{y}\; Al^{3+} + ?\; Ag.

There would thus be x silver (\rm Ag) atoms and y aluminum (\rm Al) atoms on either side of the equation. Hence, the coefficient for \rm Al\! and \rm Ag\! would be y\! and x\!, respectively.

\rm \mathnormal{x}\; Ag^{1+} + \mathnormal{y}\; Al \to \mathnormal{y}\; Al^{3+} + \mathnormal{x}\; Ag.

The x \rm Ag^{1+} ions on the left-hand side of the equation would correspond to the shortage of x electrons. On the other hand, the y Al^{3+} ions on the right-hand side of this equation would correspond to the shortage of 3\, y electrons.

Just like atoms, electrons are also conserved in a chemical reaction. Therefore, if the left-hand side has a shortage of x electrons, the right-hand side should also be x\! electrons short of being neutral. On the other hand, it is already shown that the right-hand side would have a shortage of 3\, y electrons. These two expressions should have the same value. Therefore, x = 3\, y.

The smallest integer x and y that could satisfy this relation are x = 3 and y = 1. The equation becomes:

\rm 3\; Ag^{1+} + 1\; Al \to 1\; Al^{3+} + 3\; Ag.

6 0
3 years ago
15. How many moles of CaCl are in 250. mL of 3.00 M of CaCl solution?
Jobisdone [24]
Answer:D.0.75
Answer d
8 0
2 years ago
What volume of 0.307 m naoh must be added to 200.0ml of 0.425m acetic acid (ka = 1.75 x 10-5 ) to produce a buffer of ph = 4.250
Blababa [14]

The buffer solution target has a pH value smaller than that of pKw (i.e., pH < 7.) The solution is therefore acidic. It contains significantly more protons \text{H}^{+} than hydroxide ions \text{OH}^{-}. The equilibrium equation shall thus contain protons rather than a combination of water and hydroxide ions as the reacting species.

Assuming that x \; \text{L} of the 0.307 \text{mol} \cdot \text{dm}^{-3} sodium hydroxide solution was added to the acetic acid. Based on previous reasoning, x is sufficiently small that acetic acid was in excess, and no hydroxide ion has yet been produced in the solution. The solution would thus contain 0.2000 \times 0.425 - 0.307 \; x = 0.085 - 0.307 \; x moles of acetic acid and 0.307 \; x moles of acetate ions.

Let \text{HAc} denotes an acetic acid molecule and \text{Ac}^{-} denotes an acetate ion. The RICE table below resembles the hydrolysis equilibrium going on within the buffer solution.

\begin{array}{lccccc}\text{R} & \text{HAc} & \leftrightharpoons & \text{H}^{+} & + & \text{Ac}^{-}\\\text{I} & 0.085 - 0.307 \; x& & 0 & & 0.307 \; x\\\end{array}

The buffer shall have a pH of 4.250, meaning that it shall have an equilibrium proton concentration of 10^{4.250}\; \text{mol}\cdot \text{dm}^{-3}. There were no proton in the buffer solution before the hydrolysis of acetic acid. Therefore the table shall have an increase of 10^{-4.250}\;\text{mol}\cdot \text{dm}^{-3} in proton concentration in the third row. Atoms conserve. Thus the concentration increase of protons by 10^{-4.250}\;\text{mol}\cdot \text{dm}^{-3} would correspond to a decrease in acetic acid concentration and an increase in acetate ion concentration by the same amount. That is:

\begin{array}{lcccccc}\text{R} & \text{HAc} & \leftrightharpoons & \text{H}^{+} & + & \text{Ac}^{-}\\\text{I} & 0.085 - 0.307 \; x& & 0 & & 0.307 \; x\\\text{C} & - 10^{-4.250} & & +10^{-4.250} & & +10^{-4.250} \\\text{E} & 0.085 - 10^{-4.250} - 0.307 \; x& & 10^{-4.250} & & 10^{-4.250} + 0.307 \; x\end{array}

By definition:

\text{K}_{a} = [\text{H}^{+}] \cdot [\text{Ac}^{-}] / [\text{HAc}]\\\phantom{\text{K}_{a}} = 10^{-4.250} \times (10^{-4.250} + 0.307 \; x) / (0.085 - 10^{-4.250} - 0.307 \; x)

The question states that

\text{K}_{a} = 1.75 \times 10^{-5}

such that

10^{-4.250} \times (10^{-4.250} + 0.307 \; x) / (0.085 - 10^{-4.250} - 0.307 \; x) = 1.75 \times 10^{-5}\\6.16 \times 10^{-5} \; x = 1.48 \times 10^{-6}\\x = 0.0241

Thus it takes 0.0241 \; \text{L} of sodium hydroxide to produce this buffer solution.

6 0
3 years ago
Other questions:
  • All of the following statements about solutions are correct Except?
    5·1 answer
  • Which of the following statements is true with regard to transverse and longitudinal waves?
    15·2 answers
  • Sayid recorded the temperatures of four substances in a chart.
    13·1 answer
  • Which of the following could be the name of the substance in box ‘c` choose only one box:
    8·2 answers
  • (a) Calculate the energy released by the alpha decay of 222 86Rn.
    13·1 answer
  • The ____ is found on the right side of the arrow in a chemical reaction
    6·1 answer
  • Which letter (a–f) represents potential energy (ΔH) of the products?
    7·1 answer
  • A chemical reaction in which compounds break up into simpler constituents is a _______ reaction.
    11·1 answer
  • Which formula can be used to calculate the percent yield?
    7·2 answers
  • C. What is oxidized in the reaction? What is reduced? (2 points)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!