Answer:
A) the ammeter is x
B)
- voltage across R₁ (left resistor) = 0.75 V
- voltage across the right one = 0.3 V
C) 1.05 V
Explanation:
From the diagram attached below;
A) Assuming the homes were wired in series, and one of the homes face short circuit then all the houses would face power cut but it doesn't happen. So they must be connected in parallel.
Therefore; The ammeter is connected in series, Hence, the ammeter is x and the voltmeter must be z.
B)
Given that:
x = 0.15 A
z = 0.3 V
Resistor (R) on the left = 5 ohms
Then, voltage across R₁ (left resistor) = 5×(x)
= 5×0.15
= 0.75 V
voltage across the right one = z = 0.3 V
C)
The total voltage of battery = 0.75+0.3 = 1.05 V
Answer:
S = 122.5m
Explanation:
Given the following data;
Acceleration due to gravity = 9.8m/s²
Time, t = 5 seconds
Since it's a free fall, initial velocity, u = 0
To find the displacement, we would use the second equation of motion given by the formula;

Where;
- S represents the displacement or height measured in meters.
- u represents the initial velocity measured in meters per seconds.
- t represents the time measured in seconds.
- a represents acceleration measured in meters per seconds square.
Substituting into the equation, we have;

S = 122.5m.
Answer:
The minimum coefficient of friction is 0.544
Solution:
As per the question:
Radius of the curve, R = 48 m
Speed of the car, v = 16 m/s
To calculate the minimum coefficient of static friction:
The centrifugal force on the box is in the outward direction and is given by:

where
= coefficient of static friction
The net force on the box is zero, since, the box is stationary and is given by:
To determine what the cyclists average speed is, simply divide the distance the cyclist has travelled by the time the cyclist has traveled for.
Assuming that this is the average rate the cyclist is moving at it would be 12 km/hr.
The answer is "heat transfer."