2.34 moles titanium x (6.022 x 10^23)/1 mole titanium = 1.41 x 10^24
The balanced chemical reaction is expressed as follows:
<span>CuCl2 (aq) + 2AgNO3 (aq) → 2AgCl (s) + CuNO32 (aq)
To determine the </span><span>concentration of copper(II) chloride contaminant in the original groundwater sample, we use the final amount of silver chloride that was produced from the reaction and the relation of the substances from the chemical reaction. We calculate as follows:
mmol AgCl = 6.1 mg AgCl ( 1 mmol / 143.35 mg ) = 0.0426 mmol
mmol CuCl2 = </span>0.0426 mmol AgCl ( 1 mmol CuCl2 / 2 mmol AgCl ) = 0.0213 mmol CuCl2
concentration of CuCl2 in the original water sample = 0.0213 mmol CuCl2 / 200.0 mL = 1.0638 x 10^-4 mmol / mL or 1.0638 x 10^-4 mol/L
Answer:
The temperature at which the liquid vapor pressure will be 0.2 atm = 167.22 °C
Explanation:
Here we make use of the Clausius-Clapeyron equation;
Where:
P₁ = 1 atm =The substance vapor pressure at temperature T₁ = 282°C = 555.15 K
P₂ = 0.2 atm = The substance vapor pressure at temperature T₂
= The heat of vaporization = 28.5 kJ/mol
R = The universal gas constant = 8.314 J/K·mol
Plugging in the above values in the Clausius-Clapeyron equation, we have;
T₂ = 440.37 K
To convert to Celsius degree temperature, we subtract 273.15 as follows
T₂ in °C = 440.37 - 273.15 = 167.22 °C
Therefore, the temperature at which the liquid vapor pressure will be 0.2 atm = 167.22 °C.
Answer:
: The conductivity of electrolyte solutions: (a) 0.1 M NaCl (b) 0.05 M NaCl (c) 0.1 M HgCl2. An electrolyte solution conducts electricity because of the movement of ions in the solution (see above). The larger the concentration of ions, the better the solutions conducts. Weak electrolytes, such as HgCl2, conduct badly because they produce few ions when dissolved (low concentration of ions) and exist mainly in the form of molecules.
Explanation:
Answer:
1. unless you live right around the block, distance from home to school should be in kilometers.
2. centimeters
3. millimeters
4. meters (the average is about 2 meters)