Answer:
1) Ca: [Ar]4s²
2) Pm: [Xe]6s²4f⁵
Explanation:
1) Ca:
Its atomic number is 20. So it has 20 protons and 20 electrons.
Since it is in the row (period) 4 the noble gas before it is Ar, and the electron configuration is that of Argon whose atomic number is 18.
So, you have two more electrons (20 - 18 = 2) to distribute.
Those two electrons go the the orbital 4s.
Finally, the electron configuration is [Ar] 4s².
2) Pm
The atomic number of Pm is 61, so it has 61 protons and 61 electrons.
Pm is in the row (period) 6. So, the noble gas before Pm is Xe.
The atomic number of Xe is 54.
Therefore, you have to distribute 61 - 54 = 7 electrons on the orbitals 6s and 4f.
The resultant distribution for Pm is: [Xe]6s² 4f⁵.
Explanation:
P1= 44 kpa
P2= 50 kpa
V1= 4.50 L
V2= ?
P1 V1= P2 V2
44 × 4.50 = 50 × V2
198= 50 × V2
V2 = 198/ 50
V2= 3.96 L "the new volume"
Acids react with calcium carbonate and more specifically carbonate to form carbon dioxide. An acid will give protons to the carbonate anion to produce carbonic acid which then decomposes into carbon dioxide and water. I hope this helps. Let me know if anything is unclear.
<span>0.38
You first calculate the total moles by dividing the grams by molecular weight:
45 g N2 / 28.02 g/mol = 1.6 mol N2
40 g Ar / 39.95 g/mol = 1.0 mol
Then you divide the moles of Ar by the total number of moles:
1.0 / (1.6 + 1.0) = 0.38 mol fraction</span>
Answer:
Endothermic
Explanation:
Because Endothermic is cold and exothermic is hot and if you are using an ice pack it would be Endothermic and if you were using something that was hot it would be exothermic