Explanation:
Generally, heat flows from a hot environment to a cold (lesser temperature) environment. In this case, the soup is the hot environment and the air is the cold temperature.
Heat would continue to flow from one environment to another until thermal equilibrium is reached. At this thermal equilibrium, both environments would have the same temperature.
Bone age : 22,920 years
<h3>Further explanation</h3>
Given
Nt = 2.5 g C-14
No = 40 g
half-life = 5730 years
Required
time of decay
Solution
General formulas used in decay:

t = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
Input the value :

Well, when an atom attains a stable valence electron, it means that the outer electrons are complete and so cannot attain any more electrons. For the first shell, it is complete when it has 2 electrons, the second shell is complete when it has 8 electrons, all the other shells also have a particular number when complete. Anyway, i believe the answer is HYDROGEN because when HYDROGEN combines with another atom of HYDROGEN, the outer shell is completed. This is because HYDROGEN has only 1 electron. If the two HYDROGENS, which both have 1 electron combine, they make the electrons 2, which is complete for the first shell, HYDROGEN ends in the first shell. Since the electrons become 2, the shell is at stable valence. In all the other options, this happens;
NEON- It has 10 electrons, 2 in the first shell and 8 in the second. So the the shells are already complete, so it can't bond with any thing, which is completely against the question.
RADON- Radon has 86 electrons.
HELIUM- Helium has 2 electrons, so the shell is already full, and cannot bond, so it goes against the question. The question says BY BONDING.
So the answer is definitely 4) HYDROGEN
Hope i helped. Have a nice day, by the way, i'm very sure it's hydrogen.
If you only want to balance nuclear reactions, then you should know that number of nucleons are conserved before and after nuclear reaction. Also, charge is conserved as well.
Other things which are conserved in a nuclear reaction are:
Conservation of:
1. Parity
2. Spin
3. angular momentum(vector sum of intrinsic spin and orbital angular momentum)
4. linear momentum
5. Isotopic spin
6. Energy