Answer:
Explanation:
IT'S FOR NOW, PLEASE DELIVER IT TODAY !!! I NEED HELP IT'S CHEMICAL WORK...
Answer:
I think its D
Explanation:
.........................
Answer:
58.9mL
Explanation:
Given parameters:
Initial volume = 34.3mL = 0.0343dm³
Initial concentration = 1.72mM = 1.72 x 10⁻³moldm⁻³
Final concentration = 1.00mM = 1 x 10⁻³ moldm⁻³
Unknown:
Final volume =?
Solution:
Often times, the concentration of a standard solution may have to be diluted to a lower one by adding distilled water. To find the find the final volume, we must recognize that the number of moles of the substance in initial and final solutions are the same.
Therefore;
C₁V₁ = C₂V₂
where C and V are concentration and 1 and 2 are initial and final states.
now input the variables;
1.72 x 10⁻³ x 0.0343 = 1 x 10⁻³ x V₂
V₂ = 0.0589dm³ = 58.9mL
Answer:
0.56L
Explanation:
This question requires the Ideal Gas Law:
where P is the pressure of the gas, V is the volume of the gas, n is the number of moles of the gas, R is the Ideal Gas constant, and T is the Temperature of the gas.
Since all of the answer choices are given in units of Liters, it will be convenient to use a value for R that contains "Liters" in its units:
Since the conditions are stated to be STP, we must remember that STP is Standard Temperature Pressure, which means
and 
Lastly, we must calculate the number of moles of
there are. Given 0.80g of
, we will need to convert with the molar mass of
. Noting that there are 2 oxygen atoms, we find the atomic mass of O from the periodic table (16g/mol) and multiply by 2: 
Thus, 
Isolating V in the Ideal Gas Law:


...substituting the known values, and simplifying...


So, 0.80g of
would occupy 0.56L at STP.
Answer:
see explanation below
Explanation:
First to all, this is a redox reaction, and the reaction taking place is the following:
2KMnO4 + 3H2SO4 + 5H2O2 -----> 2MnSO4 + K2SO4 + 8H2O + 5O2
According to this reaction, we can see that the mole ratio between the peroxide and the permangante is 5:2. Therefore, if the titration required 21.3 mL to reach the equivalence point, then, the moles would be:
MhVh = MpVp
h would be the hydrogen peroxide, and p the permanganate.
But like it was stated before, the mole ratio is 5:2 so:
5MhVh = 2MpVp
Replacing moles:
5nh = 2MpVp
Now, we just have to replace the given data:
nh = 2MpVp/5
nh = 2 * 1.68 * 0.0213 / 5
nh = 0.0143 moles
Now to get the mass, we just need the molecular mass of the peroxide:
MM = 2*1 + 2*16 = 34 g/mol
Finally the mass:
m = 0.0143 * 34
m = 0.4862 g