The sodium-potassium pump does not run out of ions since ion exchange is essential for the action potential to take place and to maintain homeostasis.
The cell has variable concentrations of different substances compared to the environment that surrounds it, with significant differences with sodium and potassium.
- The main function of the sodium-potassium pump is to maintain homeostasis of the intracellular medium, controlling the concentrations of these two ions.
- In order to carry out the adequate exchange of sodium and potassium ions in the extra and intracellular medium, the cells need an active transport process that is carried out thanks to the sodium potassium pump.
- This process is needed for the maintenance and functioning of cells, and it is essential for the action potential to be executed, necessary for the transmission of electrical impulses from neuron to neuron.
Therefore, we can conclude that the sodium potassium pump produces an exchange of potassium ions for sodium ions which keeps the cellular system functioning properly.
Learn more here: brainly.com/question/24336764
Bro honestly I don’t understand either
Answer:
The final temperature of hydrogen gas is 537.63 K.
Explanation:
Given data:
Initial volume = 2.00 L
Initial pressure = 740 mmHg (740/760 = 0.97 atm)
Initial temperature = 25 °C (25 +273 = 298 K)
Final temperature =?
Final volume = 3.50 L
Final pressure = standard = 1 atm
Formula:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
P₁V₁/T₁ = P₂V₂/T₂
T₂ = P₂V₂T₁ / P₁V₁
T₂ = 1 atm × 3.5 L × 298 K / 0.97 atm × 2.00 L
T₂ = 1043 atm .L. K / 1.94 atm. L
T₂ = 537.63 K
Answer:
A:force times an object displacement
Explanation: