Answer:
There is 2.52 kJ of energy released (option 4)
Explanation:
Step 1: Data given
The enthalpy of fusion of methanol (CH3OH) is 3.16 kJ/mol
Mass of methanol = 25.6 grams
Molar mass of methanol = 32.04 g/mol
Step 2: Calculate moles of methanol
Moles methanol = mass methanol / molar mass methanol
Moles methanol = 25.6 grams / 32.04 g/mol
Moles methanol = 0.799 moles
Step 3: Calculate energy transfer
Energy transfer = moles * enthalpy of fusion
Energy = 0.799 moles * 3.16 kJ/mol
Energy = 2.52 kJ released
There is 2.52 kJ of energy released
Answer:
Away from the central sulfur atom.
Explanation:
Answer:
The mass of the element is 26.20 amu
Explanation:
In this question, we are asked to calculate the mass of an element with 15 protons, 13 electrons and 11 neutrons
To calculate the atomic mass of the element, we take into consideration the masses of the individual sub atomic particles
Electrons have 0 atomic mass unit(their masses are negligible) we have no business here, Protons have a mass of
1.00727647 amu, while the mass of neutron is 1.0086654 amu
The mass of 15 protons is thus 15 * 1.00727647 = 15.10914705 amu
The mass of 11 neutrons is 11 * 1.0086654 =
11.0953194 amu
Adding this together, we have ; 11.0953194 + 15.10914705 = approximately 26.20 amu
Answer:
Imole/C=129 Directions Show All Of Your Work For Each Of The Following Problems. 1.
Explanation:
Answer:
XY4Z2 ----- square planar
XY5Z ------- square pyramidal
XY2Z----- bent < 120°
XY2Z3 ----- Linear
XY4Z ---- see saw
XY2Z2 ----- bent <109°
XY3Z2 ----- T shaped
XY3Z ----- Trigonal pyramidal
Explanation:
The valence shell electron pair repulsion theory ( VSEPR) gives the description of molecular geometry based on the relative number of electron pairs present in the molecule.
However, electron pairs repel each other, the repulsion between two lone pairs is greater than the repulsion between a lone pair and a bond pair which is also greater than the repulsion between two lone pairs.
The presence of lone pairs distort the bond angle and molecular geometry from the expected geometry based on VSEPR theory. Hence, in the presence of lone pairs of electron, the observed molecular geometry may be different from that predicted on the basis of the VSEPR theory, the bond angles also differ slightly or widely depending on the number of lone pairs present.
All the molecules in the question possess lone pairs, the number of electron pairs do not correspond to the observed molecular shape or geometry due to lone pair repulsion. Usually, the molecular geometry deals more with the arrangement of bonded atoms in the molecule.