Answer:
chloroplasts
Explanation:
Most plant shoots exhibit positive phototropism, and rearrange their chloroplasts in the leaves to maximize photosynthetic energy and promote growth.
The distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
<h3>What is concave mirror?</h3>
A concave mirror has a reflective surface that is curved inward and away from the light source.
Concave mirrors reflect light inward to one focal point and it usually form real and virtual images.
<h3>
Object distance of the concave mirror</h3>
Apply mirrors formula as shown below;
1/f = 1/v + 1/u
where;
- f is the focal length of the mirror
- v is the object distance
- u is the image distance
when image height = object height, magnification = 1
u/v = 1
v = u
Substitute the given parameters and solve for the distance of the object from the mirror's vertex
1/f = 1/v + 1/v
1/f = 2/v
v = 2f
v = 2(19.5 cm)
v = 39 cm
Thus, the distance of an object from the mirror's vertex if the image is real and has the same height as the object is 39 cm.
Learn more about concave mirror here: brainly.com/question/27841226
#SPJ1
Answer:
A kid becoming an adult
A leg becoming bruised
A person's blood pressure raising because they are running
need a picture to answer specific questions.
Explanation:
All of these are physical changes. Hope that this helps you and have a great day :)
The absolute refractive index is equal to the speed of light of the wave in air divided by the speed of light in the second medium. This means that it is equal to 3 x10^8 / 1.71 x10^8. This means the answer is 1.75
So what we can do is apply the<span> Hooke's law wich states that
F = -kx ( P.S the -ve sign means opposite in direction )
Also we will need to determine the spring's constant with the formula:
k = F / x
Where F = the force ( = 20 N )
x = the displacement of the end of the spring from it's position ( = 0.20 m )
k = the spring's constant ( = unknown )
So this would be: k = 20 / 0.20 = 100 N/m
The period of oscillation of 4 kg : T = 2 * pi * square root m / k
T = 2 * pi * square root 4 / 100
T = 1.256 seconds
Hope it helps</span>