Because although they cannot see it, they can see it's influence on objects that can be seen, and it's effects.
Answer:
The answer is 2,416 m/s. Let's jump in.
Explanation:
We do work with the amount of energy we can transfer to objects. According to energy theory:
W = ΔE
Also as we know W = F.x
We choose our reference point as a horizontal line at the block's rest point.<u> At the rest, block doesn't have kinetic energy</u> and <u>since it is on the reference point(as we decided) it also has no potential energy.</u>
Under the force block gains;
W = F.x → 
In the second position block has both kinetic and potential energy. Following the law of conservation of energy;
W = ΔE = Kinetic energy + Potantial Energy
W = ΔE = 
Here we can find h in the triangle i draw in the picture using sine theorem;
In a triangle 
In our situation
→ 
Therefore

→ 
The correct answer is Destructive Interference.Consider the image attached below. Two waves are travelling towards each other. Blue wave always has a positive peak and the red wave always has a negative peak.
Now imagine these waves are moving through a rope. If blue waves will try to move the rope in positive direction, the red wave will pull it down, and thus the two waves will cancel the effect of each other. Thus resulting in a destructive interference.
Answer:
25
Explanation:
Given:
1 can of concentrate requires 3 cans of water
Now,
Total ounces in 200 6-ounce cans = 1200 ounces
also,
for 1 can of concentrate requires 3 cans of water
thus,
for 12 ounces can water can required = 3 × 12 ounces = 36 ounces of cans
Thus,
total ounce of juice per can = 12 + 36 = 48 ounces per can
therefore,
the number of 12-ounce cans required are = 
or
= 
or
the number of 12-ounce cans required are = 25
Current = charge/time = (2 c)/(0.00024 sec)= 8,333 Amps !