Answer:
Explanation:
For entry of light into tube of unknown refractive index
sin ( 90 - 25 ) / sinr = μ , μ is the refractive index of the tube , r is angle of refraction in the medium of tube
r = 90 - C where C is critical angle between μ and body medium in which tube will be inserted.
sin ( 90 - 25 ) / sin( 90 - C) = μ
sin65 / cos C = μ
sinC = 1.33 / μ , where 1.33 is the refractive index of body liquid.
From these equations
sin65 / cos C = 1.33 / sinC
TanC = 1.33 / sin65
TanC = 1.33 / .9063
TanC = 1.4675
C= 56°
sinC = 1.33 / μ
μ = 1.33 / sinC
= 1.33 / sin56
= 1.33 / .829
μ = 1.6 Ans
The wavelength of the light beam required to turn back all the ejected electrons is 497 nm which is option (b).
- Work function is a material property defined as the minimum amount of energy required to infinitely remove electrons from the surface of a particular solid.
- The potential difference required to support all emitted electrons is called the stopping potential which is given by
.....(1) - where
is the stopping potential and e is the charge of the electron given by
.
It is given that work function (Ф) of monochromatic light is 2.50 eV.
Einstein photoelectric equation is given by:
....(2)
where K.E(max) is the maximum kinetic energy.
Substituting (1) into (2) , we get

As we know that
....(3)
where Speed of light,
and Planck's constant , 
From equation (3) , we get

Learn about more einstein photoelectric equation here:
brainly.com/question/11683155
#SPJ4
Answer:

Explanation:
The Free Body Diagram of the system is presented in the image attached below. The final speed is determined by means of the Principle of Energy Conservation and the Work-Energy Theorem:







A stretched rubber band is storing <em>elastic potential energy. (A)</em>