Answer:the force will remain same
Explanation:
because force is equal to the ratio of magnitude and distance
Given,
The initial inside diameter of the pipe, d₁=4.50 cm=0.045 m
The initial speed of the water, v₁=12.5 m/s
The diameter of the pipe at a later position, d₂=6.25 cm=0.065 m
From the continuity equation,
Where A₁ is the area of the cross-section at the initial position, A₂ is the area of the cross-section of the pipe at a later position, and v₂ is the flow rate of the water at the later position.
On substituting the known values,
Thus, the flow rate of the water at the later position is 5.99 m/s
Answer:
103.1 V
Explanation:
We are given that
Initial circumference=C=168 cm
Magnetic field,B=0.9 T
We have to find the magnitude of the emf induced in the loop after exactly time 8 s has passed since the circumference of the loop started to decrease.
Magnetic flux=
Circumference,C=
cm
When t=0
E=
t=8 s
B=0.9
Answer:
2.36 x 10^6 J
Explanation:
Tc = 0°C = 273 K
TH = 22.5°C = 295.5 K
Qc = heat used to melt the ice
mass of ice, m = 85.7 Kg
Latent heat of fusion, L = 3.34 x 10^5 J/kg
Let Energy supplied is E which is equal to the work done
Qc = m x L = 85.7 x 3.34 x 10^5 = 286.24 x 10^5 J
Use the Carnot's equation
QH = 309.8 x 10^5 J
W = QH - Qc
W = (309.8 - 286.24) x 10^5
W = 23.56 x 10^5 J
W = 2.36 x 10^6 J
Thus, the energy supplied is 2.36 x 10^6 J.
Answer:
The power will be "3.92×10⁹ Watts". A further explanation is given below.
Explanation:
The given values as per the question,
Rate,
= 8 million kg
Distance,
= 50 m
Gravity,
= 9.8 m/s²
As we know,
The power will be:
⇒
On putting the values, we get
⇒
⇒