<span>The use of the word on instead of the word in when referring to the angular distance between celestial objects comes about because all of the objects appear to be on the celestial sphere and at an indeterminable distance. While we know that objects are at different distances in the sky, their distance from Earth is irrelevant in determining the angular distance between the two objects as viewed from Earth.</span>
Refer to the figure shown below.
Let m₁ and m₂ e the two masses.
Let a = the acceleration.
Let T = tension over the frictionless pulley.
Write the equations of motion.
m₂g - T = m₂a (1)
T - m₁g = m₁a (2)
Add equations (1) and (2).
m₂g - T + T - m₁g = (m₁ + m₂)a
(m₂ - m₁)g = (m₁ + m₂)a
Divide through by m₁.
(m₂/m₁ - 1)g = (1 + m₂/m₁)a
Define r = m₂/m₁ as the ratio of the two masses. Then
(r - 1)g = (1 +r)a
r(g-a) = a + g
r = (g - a)/(g + a)
With = 2 ft/s from rest, the acceleration is
a = 2/32.2 = 0.062 ft/s²
Therefore
r = (32.2 - 0.062)/(32.2 + 0.062) = 0.9962
Answer:
The ratio of masses is 0.9962 (heavier mass divided by the lighter mass).
According to Newton (2nd law), Force = (mass) x (acceleration)
Substitute what we know : Force = (1,000 kg) x (3 m/s²)
Do the arithmetic: Force = 3,000 kg-m/s² = 3,000 newtons
Answer:
Condensation
Explanation:
That is when water from the air collects as a drop. also can be rain.