Answer:
a) 
b) 
Explanation:
given,
n =1.5 for glass surface
n = 1 for air
incidence angle = 45°
using Fresnel equation of reflectivity of S and P polarized light

using snell's law to calculate θ t


a) 

b) 

<h2>Answer:</h2>
The correct option is A.
A) The increased pressure, pushed the molecules closer together, and caused the marshmallow to shrink.
<h2>Explanation:</h2>
Jayden experimented, she placed the marshmallow in the syringe and sealed the end. When she depressed the plunger of the syringe, the pressure increased and pushed the molecules closer together and causes the marshmallow to shrink.
<h2 />
Answer:
- The work made by the gas is 7475.69 joules
- The heat absorbed is 7475.69 joules
Explanation:
<h3>
Work</h3>
We know that the differential work made by the gas its defined as:

We can solve this by integration:

but, first, we need to find the dependence of Pressure with Volume. For this, we can use the ideal gas law


This give us

As n, R and T are constants

![\Delta W= \ n \ R \ T \left [ ln (V) \right ]^{v_2}_{v_1}](https://tex.z-dn.net/?f=%20%5CDelta%20W%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20%5Cleft%20%5B%20ln%20%28V%29%20%5Cright%20%5D%5E%7Bv_2%7D_%7Bv_1%7D%20)



But the volume is:



Now, lets use the value from the problem.
The temperature its:

The ideal gas constant:

So:


<h3>Heat</h3>
We know that, for an ideal gas, the energy is:

where
its the internal energy of the gas. As the temperature its constant, we know that the gas must have the energy is constant.
By the first law of thermodynamics, we know

where
is the Work made by the gas (please, be careful with this sign convention, its not always the same.)
So:


Answer:
v(t)= (d/dt)x(t)
Explanation:
The instantaneous velocity of an object is the limit of the average velocity as the elapsed time approaches zero, or the derivative of x with respect to t. Like average velocity, instantaneous velocity is a vector with dimension of length per time. The instantaneous velocity at a specific time point t
0 is the rate of change of the position function, which is the slope of the position function
x
(
t
)
at t
0
.