1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhannawk [14.2K]
3 years ago
6

Green plants need light in order to survive. Structures in the leaves absorb light, which in turn, helps plants make their own f

ood. Under which color of light will plants be least likely to make food?
A. red
B. blue
C. orange
D. green
Physics
2 answers:
Alexus [3.1K]3 years ago
5 0

Correct answer: D). Green

Under the green color of a light plant will be least like to make food, as the plant themselves contains a green color pigment in their leaves called as chlorophyll.

It absorbs the red and blue color light and reflects back the green colored light back. This the reason why plants appear green to us.

The different color of light help plant to achieve a different goal, for example, red light combined with blue light and allow the plant to flower.




Goryan [66]3 years ago
3 0
The answer is green.
You might be interested in
What is the reflectivity of a glass surface (n =1.5) in air (n = 1) at an 45° for (a) S-polarized light and (b) P-polarized ligh
Goshia [24]

Answer:

a) R_s = 0.092

b) R_p = 0.085

Explanation:

given,

n =1.5 for glass surface

n = 1 for air

incidence angle = 45°

using Fresnel equation of reflectivity of S and P polarized light

R_s=\left | \dfrac{n_1cos\theta_i-n_2cos\theta_t}{n_1cos\theta_i+n_2cos\theta_t} \right |^2\\R_p=\left | \dfrac{n_1cos\theta_t-n_2cos\theta_i}{n_1cos\theta_t+n_2cos\theta_i} \right |^2

using snell's law to calculate θ t

sin \theta_t = \dfrac{n_1sin\theta_i}{n_2}=\dfrac{sin45^0}{1.5}=\dfrac{\sqrt{2}}{3}

cos \theta_t =\sqrt{1-sin^2\theta_t} = \dfrac{sqrt{7}}{3}

a) R_s=\left | \dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1.5\sqrt{7}}{3}}{\dfrac{1}{\sqrt{2}}+\dfrac{1.5\sqrt{7}}{3}} \right |^2

R_s = 0.092

b) R_p=\left | \dfrac{\dfrac{\sqrt{7}}{3}-\dfrac{1.5}{\sqrt{2}}}{\dfrac{\sqrt{7}}{3}+\dfrac{1.5}{\sqrt{2}}} \right |^2

R_p = 0.085

3 0
3 years ago
Jayden was given a marshmallow and a syringe in class to experiment with. She placed the marshmallow in the syringe and sealed t
Tju [1.3M]
<h2>Answer:</h2>

The correct option is A.

A) The increased pressure, pushed the molecules closer together, and caused the marshmallow to shrink.

<h2>Explanation:</h2>

Jayden experimented, she placed the marshmallow in the syringe and sealed the end. When she depressed the plunger of the syringe, the pressure increased and pushed the molecules closer together and causes the marshmallow to shrink.

<h2 />
3 0
3 years ago
A chart labeled table A : effect of height on temperature with initial temperature as 25 degrees Celsius, mass w is 1.0 kilogram
o-na [289]

Answer:

100m: 4.9 kJ

200m: 9.8 kJ

1000m: 49.1 kJ

Explanation:

edge2020

7 0
3 years ago
Read 2 more answers
A mole of ideal gas expands at T=27 °C. The pressure changes from 20 atm to 1 atm. What’s the work that the gas has done and wha
Airida [17]

Answer:

  • The work made by the gas is 7475.69 joules
  • The heat absorbed is 7475.69 joules

Explanation:

<h3>Work</h3>

We know that the differential work made by the gas  its defined as:

dW =  P \ dv

We can solve this by integration:

\Delta W = \int\limits_{s_1}^{s_2}\,dW = \int\limits_{v_1}^{v_2} P \ dv

but, first, we need to find the dependence of Pressure with Volume. For this, we can use the ideal gas law

P \ V = \ n \ R \ T

P = \frac{\ n \ R \ T}{V}

This give us

\int\limits_{v_1}^{v_2} P \ dv = \int\limits_{v_1}^{v_2} \frac{\ n \ R \ T}{V} \ dv

As n, R and T are constants

\int\limits_{v_1}^{v_2} P \ dv = \ n \ R \ T \int\limits_{v_1}^{v_2} \frac{1}{V} \ dv

\Delta W= \ n \ R \ T  \left [ ln (V) \right ]^{v_2}_{v_1}

\Delta W = \ n \ R \ T  ( ln (v_2) - ln (v_1 )

\Delta W = \ n \ R \ T  ( ln (v_2) - ln (v_1 )

\Delta W = \ n \ R \ T  ln (\frac{v_2}{v_1})

But the volume is:

V = \frac{\ n \ R \ T}{P}

\Delta W = \ n \ R \ T  ln(\frac{\frac{\ n \ R \ T}{P_2}}{\frac{\ n \ R \ T}{P_1}} )

\Delta W = \ n \ R \ T  ln(\frac{P_1}{P_2})

Now, lets use the value from the problem.

The temperature its:

T = 27 \° C = 300.15 \ K

The ideal gas constant:

R = 8.314 \frac{m^3 \ Pa}{K \ mol}

So:

\Delta W = \ 1 mol \ 8.314 \frac{m^3 \ Pa}{K \ mol} \ 300.15 \ K  ln (\frac{20 atm}{1 atm})

\Delta W = 7475.69 joules

<h3>Heat</h3>

We know that, for an ideal gas, the energy is:

E= c_v n R T

where c_v its the internal energy of the gas. As the temperature its constant, we know that the gas must have the energy is constant.

By the first law of thermodynamics, we know

\Delta E = \Delta Q - \Delta W

where \Delta W is the Work made by the gas (please, be careful with this sign convention, its not always the same.)

So:

\Delta E = 0

\Delta Q = \Delta W

7 0
3 years ago
What is the formula for instant velocity when I have time and distance?
Tomtit [17]

Answer:

v(t)= (d/dt)x(t)

Explanation:

The instantaneous velocity of an object is the limit of the average velocity as the elapsed time approaches zero, or the derivative of x with respect to t. Like average velocity, instantaneous velocity is a vector with dimension of length per time. The instantaneous velocity at a specific time point  t 0  is the rate of change of the position function, which is the slope of the position function  

x ( t ) at  t 0 .

3 0
3 years ago
Other questions:
  • The basketball coach tells his team to run sprints back and forth across the court, which is 30 m long. They start at the left e
    5·1 answer
  • The minimum amount of energy that can be absorbed or released by matter is called
    12·1 answer
  • What determines the frequency and amplitude of a vibrating object?
    8·1 answer
  • An object has a position given by r = [2.0 m + (5.00 m/s)t] i^ + [3.0m−(2.00 m/s2)t2] j^, where all quantities are in SI units.
    6·1 answer
  • When an element tends to lose its valence electrons in chemical reactions, it behaves more like a .
    5·2 answers
  • Calculate the electric field intensity at a point 3 cm away from point charge of 3 x 10^-9 C.
    8·1 answer
  • Help please!!
    5·1 answer
  • A projectile is fired at an angle of 53° to the horizontal with a speed of 80. meters per second. What is the vertical component
    9·1 answer
  • ) A 73-mH solenoid inductor is wound on a form that is 0.80 m long and 0.10 m in diameter. A coil having a resistance of is tigh
    6·1 answer
  • How is the mass of air in a hot air balloon affected when it is floating?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!