1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Salsk061 [2.6K]
3 years ago
11

The work-energy theorem states that a force acting on a particle as it moves over a ______ changes the ______ energy of the part

icle if the force has a component parallel to the motion. Choose the best answer to fill in the blanks above: Choose the best answer to fill in the blanks above: distance / potential distance / kinetic vertical displacement / potential none of the above
Physics
2 answers:
omeli [17]3 years ago
8 0

Answer:

The work-energy theorem states that a force acting on a particle as it moves over a <u>distance</u> changes the <u>kinetic</u> energy of the particle if the force has a component parallel to the motion.

Explanation:

The correct answer is presented below and all reasons are presented to explain all facts:

The work-energy theorem states that a force acting on a particle as it moves over a <u>distance</u> changes the <u>kinetic</u> energy of the particle if the force has a component parallel to the motion.

Reasons:

According to the Work-Energy Theorem, the work done on a particle (W) equals the change in its kinetic energy (\Delta K). That is:

W = \Delta K (1)

By definition of work we expand this definition:

\oint \vec F\,\bullet\,d\vec s = \Delta K (2)

Where:

\vec F - Vector force.

\vec s - Vector travelled distance.

And by definition of dot product we conclude that:

\int\limits_{A}^{B}{\|\vec F\|\cdot \|d\vec{s}\|\cdot \cos \phi} = \Delta K

Where:

\|\vec F\| - Magnitude of the vector force.

\|d\vec s\| - Magnitude of the differential of the vector travelled distance.

\phi - Angle between vectors, measured in sexagesimal degrees.

A, B - Initial and final position of the particle.

From this expression we infer that change in kinetic energy is maximum if and only if \phi = 0^{\circ} in every point of the path travelled by the particle. In addition, change in kinetic energy occurs when component of force parallel to path is not zero.

Kitty [74]3 years ago
4 0

Answer: The work-energy theorem states that a force acting on a particle as it moves over a DISTANCE changes the KINETIC energy of the particle if the force has a component parallel to the motion.

Explanation:

The work- energy theorem states that the work done when forces act on particles as it moves over a distance is equal to the change in Kinetic energy of the particle if the force has a component parallel to the motion. To express this definition an equation is used:

W= ∆K.E =(final K. E. - initial K. E)

Therefore W= ½mv²(final) - ½mv²(initial)

Where W is work done by net force and

K.E ( final minus the initial) is the particle change in Kinetic Energy.

According to this theorem, when an object slows down, its final kinetic energy is less than its initial kinetic energy, the change in its kinetic energy is negative, and so is the net work done on it. If an object speeds up, the net work done on it is positive. When calculating the net work, you must include all the forces that act on an object.

This theorem also shows that since work done on a particle can lead to change in its kinetic energy, it implies that work can transfer energy from one form to another.

You might be interested in
The force of gravitation between two spherical bodies is Gm1
malfutka [58]

Answer:

r is the separation between the two spherical bodies

3 0
3 years ago
Determine W (or fuel energy) required to launch a satellite of mass m at rest from a launching pad placed at the surface earth,
jeka57 [31]

Answer:

5. 9GmM/(10R)

Explanation:

m is the mass of the satellite

M is the mass of the earth

W is the energy required to launch the satellite

Energy at earth surface = Potential energy (PE) + W

W = Energy at earth surface - Potential energy (PE)

But PE = -\frac{GMm}{R}

Therefore: W = Energy at earth surface - \frac{GMm}{R}

Energy at earth surface (E) at an altitude of 5R = -\frac{GMm}{5r} +\frac{1}{2}mV^2

But V=\sqrt{\frac{GM}{5R} }

Therefore: E=-\frac{GMm}{5R}+\frac{1}{2}m(\sqrt{\frac{GM}{5R} } )^2=  -\frac{GMm}{5R}+\frac{GMm}{10R}  = -\frac{GMm}{10R}

W = E - PE

W=-\frac{GMm}{10R}-(-\frac{GMm}{R})=-\frac{GMm}{10R}+\frac{GMm}{R}=\frac{9GMm}{10R} \\W=\frac{9GMm}{10R}

7 0
3 years ago
A certain lightning bolt moves 50.0 C of charge. How many units of fundamental charge is this?
liubo4ka [24]
Answer: There are number of electrons.
Explanation:
We are given 50 Coulombs of charge and we need to find the number of electrons that can hold this much amount of charge. So, to calculate that we will use the equation:

where,
n = number of electrons
Charge of one electron =
Q = Total charge = 50 C.
Putting values in above equation, we get:

Hence, there are number of electrons.
7 0
4 years ago
A car travels 50km in 2 hours.
ser-zykov [4K]

Answer: it will travle 25km pr hour

Explanation:

sevide both by 2

3 0
3 years ago
9. Consider the elbow to be flexed at 90 degrees with the forearm parallel to the ground and the upper arm perpendicular to the
mojhsa [17]

Answer:

Moment about SHOULDER  ∑ τ = 3.17 N / m,

Moment respect to ELBOW   Στ= 2.80 N m

Explanation:

For this exercise we can use Newton's second law relationships for rotational motion

         ∑ τ = I α

   

The moment is requested on the elbow and shoulder at the initial instant, just when the movement begins.

They indicate the angular acceleration, for which we must look for the moments of inertia of the elements involved

The mass of the forearm with the included weight is approximately 2.3 kg, with a length of about 50cm

Moment about SHOULDER

          ∑ τ = I α

           I = I_forearm + I_sphere

the forearm can be approximated as a fixed bar at one end

            I_forearm = ⅓ m L²

the moment of inertia of the mass in the hand, let's approach as punctual

            I_mass = m L²

we substitute

           ∑ τ = (⅓ m L² + M L²) α

let's calculate

          ∑ τ = (⅓ 2.3 0.5² + 0.5 0.5²) 10

           ∑ τ = 3.17 N / m

Moment with respect to ELBOW

In this case, the arm exerts an upward force (muscle) that is about 3 cm from the elbow

         Στ = I α

         I = I_ forearm + I_mass

         I = ⅓ m (L-0.03)² + M (L-0.03)²

         

let's calculate

        i = ⅓ 2.3 0.47² + 0.5 0.47²

        I = 0.2798 Kg m²

        Στ = 0.2798 10

        Στ= 2.80 N m

3 0
3 years ago
Other questions:
  • How does the way that matter cycles through an ecosystem differ from the way that energy flows?
    7·1 answer
  • Which tool can be used to measure the volume of a liquid to one decimal place?
    5·2 answers
  • a point charge q is located at the center of a cube with edge length d. whatis the value of the flux over one face of the cube
    15·1 answer
  • What is one example of thermal energy
    10·1 answer
  • In which of the following situations would be the government had been most likely to become involved in union protests?
    6·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!<br><br> What types of waves are Sound Waves?
    6·1 answer
  • You are driving on the highway at a speed of 40 m/s (which is over the speed limit) when you notice a cop in front of you. To av
    6·1 answer
  • What happened to the combined energy of the two sleds when they collided?
    7·1 answer
  • How many electron flow through a light bulb each second if the current flow through the light bulb 0.75A.The electric charge of
    12·1 answer
  • PLease help with this this is pretty hard for me i kinda get it but not fully
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!