1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
3 years ago
14

A tennis player tosses a tennis ball straight up and then catches it after 1.77 s at the same height as the point of release. (a

) What is the acceleration of the ball while it is in flight? magnitude m/s2 direction (b) What is the velocity of the ball when it reaches its maximum height? magnitude m/s direction (c) Find the initial velocity of the ball. m/s upward (d) Find the maximum height it reaches. m'
Physics
1 answer:
Bogdan [553]3 years ago
7 0

(a) 9.8 m/s^2, downward

There is only one force acting on the ball while it is in flight: the force of gravity, which is

F = mg

where

m is the mass of the ball

g is the gravitational acceleration

According to Newton's second law, the force acting on the ball is equal to the product between the mass of the ball and its acceleration, so

F = mg = ma

which means

a = g

So, the acceleration of the ball during the whole flight is equal to the acceleration of gravity:

g = -9.8 m/s^2

where the negative sign means the direction is downward.

(b) v = 0

Any object thrown upward reaches its maximum height when its velocity is zero:

v = 0

In fact, at that moment, the object's velocity is turning from upward to downward: that means that at that instant, the velocity must be zero.

(c) 8.72 m/s, upward

The initial velocity of the ball can be found by using the equation:

v = u + at

Where

v = 0 is the velocity at the maximum height

u is the initial velocity

a = g = -9.8 m/s^2 is the acceleration

t is the time at which the ball reaches the maximum height: this is half of the time it takes for the ball to reach again the starting point of the motion, so

t=\frac{1.77 s}{2}=0.89 s

So we can now solve the equation for u, and we find:

u=v-at=0-(-9.8 m/s^2)(0.89 s)=8.72 m/s

(d) 3.88 m

The maximum height reached by the ball can be found by using the equation:

v^2 - u^2 = 2ad

where

v = 0 is the velocity at the maximum height

u = 8.72 m/s is the initial velocity

a = g = -9.8 m/s^2 is the gravitational acceleration

d is the maximum height reached

Solving the equation for d, we find

d=\frac{v^2-u^2}{2a}=\frac{0^2-(8.72 m/s)^2}{2(-9.8 m/s^2)}=3.88 m

You might be interested in
True or false. electrons move in orbits in the same way plants orbit the sun
zalisa [80]
One plants don't orbit the sun, the earth does.
two true if its saying plants orbit the sun
7 0
3 years ago
Read 2 more answers
a 42.3 kg girl and a 7.93 kg sled are on the surface of a frozen lake, 15.0m apart and linked by a rope, but not moving yet. the
ycow [4]

Answer:

they meet from the girl's original position at: 2.37 (meters)

Explanation:

We need to use the Newton's law, exactly the second law that relate force, mass and acceleration as: F=m*a with this we can get both accelerations; solving for acceleration a=\frac{F}{m}. Now a_{girl}=\frac{5.76}{42.3}=0.14 (m/s^{2}) anda_{sled}=\frac{5.76}{7.93}=0.73(m/s^{2}). Then knowing that they both travel at the same time and assuming that the distance among the girl and the sled is: 15.0-x, so, x=\frac{1}{2}*a_{girl}*t^{2} and15.0-x=\frac{1}{2}*a_{sled}*t^{2}, solving for the time we get:t=\sqrt{\frac{2x}{a_{girl} } } and t=\sqrt{\frac{2*(15.0-x)}{a_{sled} } } with this equations we solving for the x that is the distance between the girl and the sled after the apply the force and we get:\sqrt{\frac{2x}{a_{girl}}} = \sqrt{\frac{2*(15.0-x)}{a_{sled} }. Finally we get:\frac{x}{a_{girl} }=\frac{(15.0-x)}{a_{sled} } and replacing the values we have got:\frac{x}{0.14} =\frac{(15.0-x)}{0.73} so 5.33*x=15-x so x=2.37 (meters).

5 0
3 years ago
Encuentra la masa molar<br><br> TO<br><br> de 65 litros de SO2
shepuryov [24]

La masa molar de 65 litros de SO2 es igual a 64,1 g/mol.

<h3>Masa molar</h3>

La masa molar de un compuesto depende de su masa presente en 1 mol, entonces:

                                          MM=\frac{m}{mol}

Para calcular la masa molar de un compuesto, simplemente suma las masas de cada elemento en el compuesto, así:

MM_O = 16g/mol\\MM_S= 32.1g/mol

                                32.1 + 2\times 16 = 64.1g/mol

Así, la masa molar de 65 litros de SO2 es igual a 64,1 g/mol.

Obtenga más información sobre la masa molar en: brainly.com/question/17109809

8 0
2 years ago
A mass m attached to a horizontal massless spring with spring constant k, is set into simple harmonic motion. its maximum displa
Lesechka [4]
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:
U_i= \frac{1}{2} ka^2
while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:
K_i =0
And the total energy of the system is
E_i = U_i+K= \frac{1}{2}ka^2

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:
U_f = 0
while the mass is moving at speed v, and therefore the kinetic energy is
K_f =  \frac{1}{2} mv^2
And the total energy is
E_f = U_f + K_f =  \frac{1}{2} mv^2

For the law of conservation of energy, the total energy must be conserved, therefore E_i = E_f. So we  can write
\frac{1}{2} ka^2 =  \frac{1}{2}mv^2
that we can solve to find an expression for v:
v= \sqrt{ \frac{ka^2}{m} }
6 0
3 years ago
Hemoglobin (Hb) is the O2-carrying protein in our blood. Unlike myoglobin, it has four sites allowing it to bind up to four O2 m
bogdanovich [222]

Answer:

Yes, the energy is not simply the sum of the individual binding energies at each site, it is the product of energy at each binding site of hemoglobin.

Explanation:

Myoglobin and hemoglobin are two different cells. Myoglobin binds only one oxygen while the hemoglobin has the ability to binds four oxygen atoms at its four sides. Myoglobin present in muscle tissue only while hemoglobin is present in the whole body. Oxyhemoglobin is formed when oxygen binds with hemoglobin cell. This oxygen is take to all cells and energy is released due to the breakdown of glucose molecules with this oxygen.

4 0
3 years ago
Other questions:
  • Suppose that air resistance cannot be ignored. For the position at which the person has jumped from the platform and the cord re
    8·1 answer
  • A 12 v automobile battery is connected to an electric starter motor. the current through the motor is 246
    9·1 answer
  • Which question would most likely fill in the blank
    6·1 answer
  • what kind of image is formed when the image distance is positive? what kind of image is formed when the image distance is negati
    5·2 answers
  • Which statements describe intensity? Check all that apply.
    15·2 answers
  • A fisherman casts his lure at an angle of 33 degrees above the horizontal. The lure reaches a maximum height of 2.3 m. Assuming
    9·1 answer
  • Ball's velocity be in a year? Assume there are no nearby planets.
    7·1 answer
  • The star Wolf 1061 has a parallax of 2.34 arc seconds, while the star Ross 652 has a parallax of 1.70 arc seconds. What can you
    6·1 answer
  • NEED HELP THIS IS DUE IN 30 MINUTES
    10·1 answer
  • A(n) 636 kg elevator starts from rest. It moves upward for 4.5 s with a constant acceleration until it reaches its cruising spee
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!