1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
3 years ago
14

A tennis player tosses a tennis ball straight up and then catches it after 1.77 s at the same height as the point of release. (a

) What is the acceleration of the ball while it is in flight? magnitude m/s2 direction (b) What is the velocity of the ball when it reaches its maximum height? magnitude m/s direction (c) Find the initial velocity of the ball. m/s upward (d) Find the maximum height it reaches. m'
Physics
1 answer:
Bogdan [553]3 years ago
7 0

(a) 9.8 m/s^2, downward

There is only one force acting on the ball while it is in flight: the force of gravity, which is

F = mg

where

m is the mass of the ball

g is the gravitational acceleration

According to Newton's second law, the force acting on the ball is equal to the product between the mass of the ball and its acceleration, so

F = mg = ma

which means

a = g

So, the acceleration of the ball during the whole flight is equal to the acceleration of gravity:

g = -9.8 m/s^2

where the negative sign means the direction is downward.

(b) v = 0

Any object thrown upward reaches its maximum height when its velocity is zero:

v = 0

In fact, at that moment, the object's velocity is turning from upward to downward: that means that at that instant, the velocity must be zero.

(c) 8.72 m/s, upward

The initial velocity of the ball can be found by using the equation:

v = u + at

Where

v = 0 is the velocity at the maximum height

u is the initial velocity

a = g = -9.8 m/s^2 is the acceleration

t is the time at which the ball reaches the maximum height: this is half of the time it takes for the ball to reach again the starting point of the motion, so

t=\frac{1.77 s}{2}=0.89 s

So we can now solve the equation for u, and we find:

u=v-at=0-(-9.8 m/s^2)(0.89 s)=8.72 m/s

(d) 3.88 m

The maximum height reached by the ball can be found by using the equation:

v^2 - u^2 = 2ad

where

v = 0 is the velocity at the maximum height

u = 8.72 m/s is the initial velocity

a = g = -9.8 m/s^2 is the gravitational acceleration

d is the maximum height reached

Solving the equation for d, we find

d=\frac{v^2-u^2}{2a}=\frac{0^2-(8.72 m/s)^2}{2(-9.8 m/s^2)}=3.88 m

You might be interested in
Imagine an infinite earth with a hole dripped through it. You fall in and accelerate at g~10m/s/s. How long until you reach the
Soloha48 [4]

An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.

And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds

6 0
3 years ago
You are trying to overhear a juicy conversation, but from your distance of 25.0 m , it sounds like only an average whisper of 20
spayn [35]

Answer:So You Decide To Move Closer To Give The Conversation A Sound Level Of 80.0dB Instead. ... You are trying to overhear a juicy conversation, but from your distance of 24.0m , it sounds like only an average whisper of 40.0dB .

Explanation:

7 0
3 years ago
What is the concentration of the 100 g of solution having 25 g of solute?
Alexus [3.1K]

Answer:

70%

Explanation:

it's 70% hope it helps

8 0
2 years ago
a spring gun initially compressed 2cm fires a 0.01kg dart straight up into the air. if the dart reaches a height it 5.5m determi
Vikki [24]

Answer:

2697.75N/m

Explanation:

Step one

This problem bothers on energy stored in a spring.

Step two

Given data

Compression x= 2cm

To meter = 2/100= 0.02m

Mass m= 0.01kg

Height h= 5.5m

K=?

Let us assume g= 9.81m/s²

Step three

According to the principle of conservation of energy

We know that the the energy stored in a spring is

E= 1/2kx²

1/2kx²= mgh

Making k subject of formula we have

kx²= 2mgh

k= 2mgh/x²

k= (2*0.01*9.81*5.5)/0.02²

k= 1.0791/0.0004

k= 2697.75N/m

Hence the spring constant k is 2697.75N/m

7 0
3 years ago
Power windmills turn in response to the force of high-speed drag. For a sphere moving through a fluid, the resistive force, FR i
Crazy boy [7]

Answer:

The answer is 20727w

Explanation:

The formula is below;

P = d r^2 v^3 *efficiency

In the question, it is stated that the registration ignores efficiency so we are going to ignore efficiency in the equation and use it this way;

P = d r^2 * v^3

d =4.3, r = 1.59, v =n 12.4

Therefore, P = 4.3 X 1.59^2  X 12.4^3 = 20727W

3 0
3 years ago
Other questions:
  • Tres litros de oxigeno gaseoso a 15 grados centígrados y a presión atmosférica (1atm), se lleva a una presión de 10mm de Hg. ¿ c
    13·1 answer
  • 50 POINTS ANSWER CORRECTLY
    11·2 answers
  • The steering wheel is connected to and controls the wheels by the axle.
    9·1 answer
  • Gamma rays have a _____ frequency and a _____ wavelength.
    14·2 answers
  • Does a cell ever reach equilibrium
    13·2 answers
  • Who was the first who traveled to the moon?​
    8·2 answers
  • Name the 8 levels of classification from the most general most definite
    8·1 answer
  • A sound having a frequency of 395 Hz travels through air at 331 m/s. What is the wavelength of the sound? Answer in units of m.
    11·1 answer
  • a ball rolls off the edge of a 2m high shelf at a speed of 5 m/s and hits the ground the taken to hit the ground is
    5·1 answer
  • Scientists observe an approaching asteroid that is on a collision course with
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!