Answer: Option (D) is the correct answer.
Explanation:
An electric circuit works well when all the connections are complete but if any of the connections in the circuit is loose or disconnected then it is possible that current will not flow from the circuit.
Therefore, when Jenna removed one of the clips on the battery then circuit becomes incomplete and as a result there will no flow of current.
Thus, we can conclude that the electrical energy would stop because the circuit is incomplete.
2H2O = 2H2 + O2.
<h3><u>Explanation</u>:</h3>
Balancing equations is very essential because of the fact that it represents the stoichiometric quantities of the reactants needed to react to form the product. The ratio of the weights of reactant and product are also very well understood from this.
Here in this equation, the water is broken into hydrogen and oxygen. The balanced reaction is
2H2O = 2H2 + O2.
Two moles of water is broken down into 2 moles of hydrogen and one mole of oxygen.
The correct answer from the choices given is the last option. The can from the <span> car will lose the carbon more quickly because there are fewer solute–solvent collisions. The can in the car has a lower temperature than the one in the refrigerator. At low temperature, the solubility of carbon dioxide in the liquid decrease therefore particles would tend to be in the vapor phase and escape from the liquid.</span>
you can google it and it pops up right away
Answer:
It has been approximately 6 hours after death.
Explanation:
This is because between 2-6 hours after death, the body starts becoming stiff from top to bottom, then spreading to the limbs. Since there is only rigor in his upper body, that would mean that with normal temperature and body conditions, it would be 4 or 5 hours after death. But since he is obese and in cold temperature, there is slower progression of rigor, leading to the maximum time in the first rigor mortis phase, 6 hours.