To know the number of atoms, it will be necessary to use the formula of avogadro. We calculate the number of moles then we can calculate the number of avogadro.
The molar mass of:
Phosphorus = 31g / mol
Mercury = 200 g / mol
Bismuth = 209 g / mol
Strontium = 87 g / mol.
The number of avogadro (N) is 6.023 10 ^ 23
n = m (mass) / M (molar mass)
number of atoms = n. N = m / M . N
number of phosphorus atoms = 5.14/31 . 6.023 10^23 = 9.98 10 ^ 22 atoms
Number of atoms of mercury = 2.16/200 . 6.023 10^23 = 6.5 10 ^ 21 atoms
Number of bismuth atoms = 1.8/209 . 6.023 10^23 = 5.18 10 ^ 21 atoms
Number of strontium atoms = 8.8 x 10-2 /87 . 6.023 10^23 = 6.09 10 ^ 20 atoms
Answer:
Tilt of a planet's axis and its orbit around the sun.
Explanation:
hope this helps! :)
Oxygen is the second. The first is nitrogen which makes up 78% of air. Oxygen makes up 21% of air.
Answer: Decreases the rate of reaction
- Remove water from food by dehydration.
- Transport food in a refrigerated truck.
- Store food in airtight containers.
- Store food in a refrigerator after opening.
Does not decrease the rate of reaction
- Store food in the open air.
- Place food on a warm surface.
Explanation: Dehydration of food excludes water from food which is one of the factor needed by microorganisms for growth, <em>so it decreaese the rate of reaction.</em>
Transporting food in refrigerated trucks lowers the temperature of food and not many microorganisms are active at very low temperatures, so it <em>decreases the rate of reaction.</em>
Storing food in airtight containers excludes air which is one of the factors required for microbial activity, so <em>it decreases reaction rate.</em>
Storing food in refrigerators after opening also <em>lowers the temperature of food and hence the the rate of microbial activit</em>y.
Storing food in the open air <em>does not decrease microbial activity</em> instead it provides microorganisms with the favorable conditions for their activity such as air and water from water vapor in the air.
Placing food on a warm surface <em>does not decrease rate of reaction</em> because microorganisms are very active in warm and humid environments.