Answer:
O Charles's law
.
Explanation:
Hello!
In this case, since the use of gas laws leads to a good comprehension of how gases behave towards volume, pressure and temperature, we can review that the Boyle's law explains the pressure-volume variation, the Dalton's law the partial pressure effect, the Gay-Lussac's law that of pressure and temperature and the Charles' that of temperature and volume at constant pressure; thus, the answer for the asked question is:
O Charles's law
Best regards!
First you need to know the molecular weight of sugar (C6H12O6) which is 180.156g/mol
You have half a mole so you have 90.078g
If you wanted to make 1L of a 1.2M solution of glucose you would need 180.156*1.2=216.1872g
But you only have 90.078g
So you need to figure out how much this 90.078g will make if the solution must be 1.2M:
90.078g/216.1872g=xL/1L
solve for the X and you get 0.416666666...
so 416.7ml or 0.417L
Answer:
∴ Q = -7.52kCal
Explanation:
Using the formula for specific heat capacity:
Q = mcΔT
where ΔT = change in temperature (final - initial) = (0 - 100)°C = -100°C
m = mass (g) = 75g
c = specific heat capacity = 4.2 J/g°C in water
⇒ Q = 75 × 4.2 × -100
= -31,500J
But 1J - 0.000239kCal
<u>∴ Q = -7.52kCal</u>
<u />
Let me know if I can be of further assistance.
If there was more water area and less land more animals would adapt to the water life than land. Like for example more evolving fins or even amphibians
just staying in water and no longer needing legs or the things they use for living on the land.