For the answer to the question above asking, h<span>ow many moles of glucose (C6H12O6) are in 1.5 liters of a 4.5 M C6H12O6 solution?
The answer to your question is the the third one among the given choices which is 6.8 mol.
</span><span>moles glucose = 1.5 x 4.5 = 6.8 </span>
An organisam is part of your body plant life
Answer:
The answer is "
"
Explanation:
Please find the complete question in the attached file.
Equation:
at
at equilibrium
![p= 0.47 \ \ atm\\\\SO_2=3.3-0.47 = 2.83 \ \ atm\\\\O_2= 0.74 -\frac{0.47}{2}=0.74-0.235=0.555 \ atm\\\\K_P=\frac{[PSO_3]^2}{[PSO_2]^2[PO_2]}\\\\](https://tex.z-dn.net/?f=p%3D%200.47%20%5C%20%5C%20atm%5C%5C%5C%5CSO_2%3D3.3-0.47%20%3D%202.83%20%5C%20%5C%20atm%5C%5C%5C%5CO_2%3D%200.74%20-%5Cfrac%7B0.47%7D%7B2%7D%3D0.74-0.235%3D0.555%20%5C%20atm%5C%5C%5C%5CK_P%3D%5Cfrac%7B%5BPSO_3%5D%5E2%7D%7B%5BPSO_2%5D%5E2%5BPO_2%5D%7D%5C%5C%5C%5C)

Answer:
6.564×10¹⁶ fg.
Explanation:
The following data were obtained from the question:
Mass of beaker = 76.9 g
Mass of beaker + salt = 142.54 g
Mass of salt in fg =?
Next, we shall determine the mass of the salt in grams (g). This can be obtained as follow:
Mass of beaker = 76.9 g
Mass of beaker + salt = 142.54 g
Mass of salt =?
Mass of salt = (Mass of beaker + salt) – (Mass of beaker)
Mass of salt = 142.54 – 76.9
Mass of salt = 65.64 g
Finally, we shall convert 65.64 g to femtograms (fg) as illustrated below:
Recall:
1 g = 1×10¹⁵ fg
Therefore,
65.64 g = 65.64 g × 1×10¹⁵ fg / 1g
65.64 g = 6.564×10¹⁶ fg
Therefore, the mass of the salt is 6.564×10¹⁶ fg.
I suck at chemistry but i have a friend that can help