Answer:
it goes back an hour from the time it was
Answer:
1) d
2) 5 m/s
3) 100
Explanation:
The equation of position x for a constant acceleration a and an initial velocity v₀, initial position x₀, time t is:
(i) 
The equation for velocity v and a constant acceleration a is:
(ii) 
1) Solve equation (ii) for acceleration a and plug the result in equation (i)
(iii) 
(iv) 
Simplify equation (iv) and use the given values v = 0, x₀ = 0:
(v) 
2) Given v₀= 3m/s, a=0.2m/s², t=10 s. Using equation (ii) to get the final velocity v:
3) Given v₀=0m/s, t₁=10s, t₂=1s and x₀=0. Looking for factor f = x(t₁)/x(t₂) using equation(i) to calculate x(t₁) and x(t₂):

Explanation:
The machine whose efficiency is 100% is known as perfect machine .This machine is not possible in real life because every machine is affected by the overcoming friction due to which is efficiency become less than hundred percent .
We can use the equation for kinetic energy, K=1/2mv².
Your given variables are already in the correct units, so we can just plug in the variables and solve for v.
K = 1/2mv²
16 = 1/2(2)v²
16 = (1)v²
√16 = v
v = 4 m/s
Therefore, the velocity of a 2 kg mass with 16 J of kinetic energy is 4 m/s.
Hope this is helpful!