Sitting = no movement
KE=0
Explanation:
M.A = load / Effort
efficiency = M.A/V.R X 100
75 = M.A / 4 X 100
75 = 25 X M.A
M.A = 75/25 = 3
M.A = load / effort
3 = 100/E
E = 100/3 = 33.333
false. all obejects in motion have friction
Approximately 0.4373 seconds
Speed of sound at 20 degree C is roughly 343 meters/second
Speed of light = 3x10^8 or 300,000,000 meters/second
at 150.0 feet away you set it up as:
150.0/343 - 150/3x10^8
150.0/343 = 0.43731778
150/3x10^8 = 5x10^-7 or 0.0000005
Subtract 0.43731778 - 0.0000005
Answer is 0.43731728
Rounding would be approx. 0.4373
Answer:
Data:-vi=om/s (b/c as in question penny is dropped from building means before coming to ground its initial state or velocity was considered as zero ) now distance or height h=380m and now we have to find the final velocity vf=? and the time t=?
Explanation:
So applying second eq of motion s=vit+1/2×gt² (here we have taken a gravity b/c when ever body is in vertical position then acceleration due to gravity is applied ) s=0×t+1/2×gt² , s=0+1/2×9.8×t² ,380=4.9t² we have to find t so 4.9t²=380 , t²=380÷4.9 , t²=77.55 now sq root on b/s

so t=8.806s and now apply 1st eq o²f motion to find out vf so vf=vi+gt , vf=0+9.8×8.806 ,vf=86.298 and if you want to verify that either this is answer is correct or not so put the value of t in second eq of motion and if you got distance same as give in the question so your value of t is considered as correct likewise s=vit+1/2gt² , s=0+1/2×9.8(8.806)²,s=4.9×77.55 ,s=380m (proved) I hope it would be helpfull