As the roller coaster speeds up on the way down the hill, the potential energy of roller coaster will be converted to kinetic energy.
<h3>
What is Conservation of Energy ?</h3>
Conservation of energy state that energy is neither created nor destroy, they can only be transformed from one form to another. Energy of and object can transform from Potential energy to kinetic energy and vice versa
Given that at the top of a hill a roller coaster has gravitational potential energy due to its position. What will happen to this potential energy as the roller coaster speeds up on the way down the hill is that the potential energy to the roller coaster will start decreasing while the kinetic energy will start to increase.
The total energy of the roller coaster will be constant because of conservation of energy. As the roller coaster speeds up on the way down the hill, the potential energy will eventually reduce to zero where the total energy of the as the roller coaster will be equal to maximum kinetic energy.
Therefore, as the roller coaster speeds up on the way down the hill, the potential energy of roller coaster will be converted to kinetic energy.
Learn more about Energy here: brainly.com/question/25959744
#SPJ1
Answer:
Explanation:
Given
speed of Electron 
final speed of Electron 
distance traveled 
using equation of motion

where v=Final velocity
u=initial velocity
a=acceleration
s=displacement


acceleration is given by 
where q=charge of electron
m=mass of electron
E=electric Field strength

Answer:
Explanation:
As we know that the ball is projected upwards so that it will reach to maximum height of 16 m
so we have

here we know that

also we have

so we have


Now we need to find the height where its speed becomes half of initial value
so we have

now we have





Answer:
mass is lifted 1.8 m. What is the potential energy of the mass 4. A 100 kg
Answer:
70%
Explanation:
35 is 70% of 50, have a good day :)