1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jek_recluse [69]
2 years ago
8

As speed (velocity) increases, potential energy increases true or false

Physics
1 answer:
Lyrx [107]2 years ago
3 0

Answer:

true

Explanation:

You might be interested in
Velocityis a vector quantity which has both magnitude and direction. Using complete sentences, describethe object's velocity. Co
mr_godi [17]

Answer:

Explanation:

A physical quantity which can be completely described by the magnitude and direction both are called vector quantities. For example, displacement, velocity, etc.

A physical quantity which can be completely explained by the magnitude only is called scalar quantity. For example, mass, time, etc.

8 0
3 years ago
How many licks dose it take to eat a lolipop
murzikaleks [220]

Answer: Around 364 to 480

3 0
3 years ago
Read 2 more answers
wo lacrosse players collide in midair. Jeremy has a mass of 120 kg and is moving at a speed of 3 m/s. Hans has a mass of 140 kg
Julli [10]

2.71 m/s fast Hans is moving after the collision.

<u>Explanation</u>:

Given that,

Mass of Jeremy is 120 kg (M_J)

Speed of Jeremy is 3 m/s (V_J)

Speed of Jeremy after collision is (V_{JA}) -2.5 m/s

Mass of Hans is 140 kg (M_H)

Speed of Hans is -2 m/s (V_H)

Speed of Hans after collision is (V_{HA})

Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is  

= =\mathrm{M}_{1} \times \mathrm{V}_{\mathrm{J}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{H}}

Substitute the given values,

= 120 × 3 + 140 × (-2)

= 360 + (-280)

= 80 kg m/s

Linear momentum after the collision of Jeremy and Hans is  

= =\mathrm{M}_{\mathrm{J}} \times \mathrm{V}_{\mathrm{JA}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{HA}}

= 120 × (-2.5) + 140 × V_{HA}

= -300 + 140 × V_{HA}

We know that conservation of liner momentum,

Linear momentum before the collision = Linear momentum after the collision

80 = -300 + 140 × V_{HA}

80 + 300 = 140 × V_{HA}

380 = 140 × V_{HA}

380/140= V_{HA}

V_{HA} = 2.71 m/s

2.71 m/s fast Hans is moving after the collision.

4 0
3 years ago
A seagull flies at a velocity of 9.00 m/s straight into the wind. (a) if it takes the bird 20.0 min to travel 6.00 km relative t
enot [183]

Here we will the speed of seagull which is v = 9 m/s

this is the speed of seagull when there is no effect of wind on it

now in part a)

if effect of wind is in opposite direction then it travels 6 km in 20 min

so the average speed is given by the ratio of total distance and total time

v_{avg} = \frac{6000}{20*60}

v_{avg} = 5m/s

now since effect of wind is in opposite direction then we can say

V_{net} = v_{bird} - v_{wind}

5 = 9 - v_{wind}

v_{wind}= 4 m/s

Part b)

now if bird travels in the same direction of wind then we will have

v_{net}= v_{bird} + v_{wind}

v_{net} = 9 + 4 = 13 m/s

now we can find the time to go back

time = \frac{distance}{speed}

time = \frac{6000}{13}

time = 7.7 minutes

Part c)

Total time of round trip when wind is present

T = t_1 + t_2

T = 20 + 7.7 = 27.7 min

now when there is no wind total time is given by

T = \frac{6000}{9} + \frac{6000}{9}

T = 22.22 min

So due to wind time will be more

4 0
3 years ago
A circular coil of wire of radius 5.0 cm has 20 turns and carries a current of 2.0 A. The coil lies in a magnetic field of magni
Korvikt [17]

Answer:a. Magnetic dipole moment is 0.3412Am²

b. Torque is zero(0)N.m

Explanation: The magnetic dipole moment U is given as the product of the number of turns n times the current I times the area A

That is,

U = n*I*A

But Area A is given as pi*radius² since it is a circular coil

Radius given is 5cm converting to meter we divide by 100 so we have our radius to be 0.05m. So area A is

A = 3.142*(0.05)² =7.86*EXP {-3} m²

Current I is 2 A

Number of turns is 20

So magnetic dipole moment U is

U = 20*2*7.86*EXP {-3}=0.3142A.m²

b. Torque is given as the cross product of the magnetic field B and magnetic dipole moment U

Torque = B x U =B*U*Sine(theta)

But since the magnetic field is directed parallel to the plane of the coil from the question, it means that the angle between them is zero and sine zero is equals 0(zero) if you substitute that into the formula for torque you will find out that your torque would equals zero(0)N.m

7 0
3 years ago
Other questions:
  • A certain tuning fork vibrates at a frequency of 215 Hz while each tip of its two prongs has an amplitude of 0.832 mm. (a) What
    9·1 answer
  • We have three identical metallic spheres A, B, C. Initially sphere A is charged with charge Q, while B and C are neutral. First,
    8·1 answer
  • how do the retinas of the eyes of night hunting animals differ from the retinas of animals that hunt during the day time
    15·2 answers
  • a sound wave is determined to have a frequency of 1,000 hz and wavelength of 35cm. what is the speed of this wave?
    7·1 answer
  • An electrically neutral atom has the same # of protons and electrons true or false ?
    14·2 answers
  • An astronaut landed on a far away planet that has a sea of water. To determine the gravitational acceleration on the planet's su
    5·1 answer
  • Humanity is faced by many challenges and problems.
    9·1 answer
  • How is the thermal energy of a radiator transferred to the surrounding air
    11·1 answer
  • A car is designed to get its energy from a rotating
    13·1 answer
  • a 9.0-kg dog runs at 4.0 m/s and jumps onto a stationary skateboard the mas of the skateboard is 1.0 m/s what speed is the speed
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!