Answer:
Explanation:
A physical quantity which can be completely described by the magnitude and direction both are called vector quantities. For example, displacement, velocity, etc.
A physical quantity which can be completely explained by the magnitude only is called scalar quantity. For example, mass, time, etc.
Answer: Around 364 to 480
2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg (
)
Speed of Jeremy is 3 m/s (
)
Speed of Jeremy after collision is (
) -2.5 m/s
Mass of Hans is 140 kg (
)
Speed of Hans is -2 m/s (
)
Speed of Hans after collision is (
)
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
= 
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
= 
= 120 × (-2.5) + 140 × 
= -300 + 140 × 
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 × 
80 + 300 = 140 × 
380 = 140 × 
380/140= 
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.
Here we will the speed of seagull which is v = 9 m/s
this is the speed of seagull when there is no effect of wind on it
now in part a)
if effect of wind is in opposite direction then it travels 6 km in 20 min
so the average speed is given by the ratio of total distance and total time


now since effect of wind is in opposite direction then we can say



Part b)
now if bird travels in the same direction of wind then we will have


now we can find the time to go back



Part c)
Total time of round trip when wind is present


now when there is no wind total time is given by


So due to wind time will be more
Answer:a. Magnetic dipole moment is 0.3412Am²
b. Torque is zero(0)N.m
Explanation: The magnetic dipole moment U is given as the product of the number of turns n times the current I times the area A
That is,
U = n*I*A
But Area A is given as pi*radius² since it is a circular coil
Radius given is 5cm converting to meter we divide by 100 so we have our radius to be 0.05m. So area A is
A = 3.142*(0.05)² =7.86*EXP {-3} m²
Current I is 2 A
Number of turns is 20
So magnetic dipole moment U is
U = 20*2*7.86*EXP {-3}=0.3142A.m²
b. Torque is given as the cross product of the magnetic field B and magnetic dipole moment U
Torque = B x U =B*U*Sine(theta)
But since the magnetic field is directed parallel to the plane of the coil from the question, it means that the angle between them is zero and sine zero is equals 0(zero) if you substitute that into the formula for torque you will find out that your torque would equals zero(0)N.m