When a large rock is weathered into tiny pieces which add up the weight of the original rock, this demonstrates the law of conservation of matter.
According to this law the mass of an object doesn't change with time and also it does not depends on how the particles are arranged themselves.
Hence, option (C) is correct.
Answer:
The correct option is;
B. 8 m, because he has to apply less force over a greater distance
Explanation:
In the given question, in order for the student to lift the boxes onto the tuck with less amount of force, he applies the principle of Mechanical Advantage
The mechanical advantage is given by the measure by which a force is amplified through the use of a tool
Given that the work done = The force × The distance, we have
F₁ × d₁ = F₂ × d₂, which gives;
d₁/d₂ = F₂/F₁
Where;
F₁ = The input force
F₂ = The output force
d₁ = The input distance
d₂ = The output distance
The Mechanical advantage, MA = d₁/d₂ = F₂/F₁
Therefore, when the input distance is increased the input force will be reduced for a given output force
Answer:
Because of the location, humidity and temperatures.
Explanation:
Coca is grown in humid and very humid subtropical forests, called yungas and
they form the lower floor of the upper Jungle, in the Central Andes, mostly in Peru and Bolivia. The yungas are in contact with the rainforests of the lowlands in Amazonia, where it has been started to expand coca cultivation recently (Dourojeanni, 1988). The optimum altitude is 1000 a 2000 meters (where cocaine content is higher), with optimal annual average precipitation, is 2000 meters mm, but it is grown between 700 and 2000 msnm and with an average annual rainfall of 1000 to 4200 mm.
msnm = meters above sea level
Given: Change of x is 35.4m, Velocity Final=7.10 m/s, Velocity Initial=0m/s
Find: Acceleration
Analysis:
Vf²=Vi²+2aΔx (Velocity final squared equals Velocity initial squared plus 2 times acceleration times change of x)
(7.10 m²/s)²=(0 m/s)²+2a(35.4 m)
50.41 m/s²=(70.8 m)a
a=0.712 m/s²
Answer:
2452.79432 m/s
Explanation:
m = Mass of ice
= Latent heat of steam
= Specific heat of water
= Latent heat of ice
v = Velocity of ice
= Change in temperature
Amount of heat required for steam

Heat released from water at 100 °C

Heat released from water at 0 °C

Total heat released is

The kinetic energy of the bullet will balance the heat

The velocity of the ice would be 2452.79432 m/s