Answer:
The correct solution is "14.6875 kg".
Explanation:
Given values:
Force,
F = 47.0 N
Acceleration,
a = 3.20 m/s²
Now,
⇒ 
or,
⇒ 
⇒ 
⇒ 
⇒ 
Answer:
a. k = (1/k₁ + 1/k₂)⁻¹ b. k = (1/k₁ + 1/k₂ + 1/k₃)⁻¹
Explanation:
Since only one force F acts, the force on spring with spring constant k₁ is F = k₁x₁ where x₁ is its extension
the force on spring with spring constant k₂ is F = k₂x₂ where x₁ is its extension
Let F = kx be the force on the equivalent spring with spring constant k and extension x.
The total extension , x = x₁ + x₂
x = F/k = F/k₁ + F/k₂
1/k = 1/k₁ + 1/k₂
k = (1/k₁ + 1/k₂)⁻¹
B
The force on spring with spring constant k₃ is F = k₃x₃ where x₃ is its extension
Let F = kx be the force on the equivalent spring with spring constant k and extension x.
The total extension , x = x₁ + x₂ + x₃
x = F/k = F/k₁ + F/k₂ + F/k₃
1/k = 1/k₁ + 1/k₂ + 1/k₃
k = (1/k₁ + 1/k₂ + 1/k₃)⁻¹
One path because in a series circuit it is only one path while in a parallel circuit you have 2 or more. Our houses use parallel so that is why you can turn off one light and the rest would stay on.
First harmonic of a closed pipe is determined as velocity, v, to four times length (4L), F₀ v/4L.
<h3>
First harmonic of a closed pipe</h3>
The first harmonic of a closed pipe is the fundamental frequency of the closed of the closed pipe.
L = λ/4
where;
- L is the length of the pipe
- λ is the wavelength of sound
λ = 4L
But, v = F₀λ
v = F₀(4L)
F₀ = v/4L
where;
- F₀ is the first harmonic
- v is speed of sound
Thus, first harmonic of a closed pipe is determined as velocity, v, to four times length (4L), F₀ v/4L.
Learn more about fundamental frequency here: brainly.com/question/1967686
#SPJ11
<h3 />