Given: The mass of stone (m) = 0.5 kg
Raised from heights (h₁) = 1.0 m to (h₂) = 2.0 m
Acceleration due to gravity (g) = 9.8 m/s²
To find: The change in potential energy of the stone
Formula: The potential energy (P) = mgh
where, all alphabets are in their usual meanings.
Now, we shall calculate the change in potential energy of the stone
Δ P = P₂ - P₁ = mg (h₂ - h₁)
or, = 0.5 kg ×9.8 m/s² ×(2.0 m - 1.0 m)
or, = 4.9 J
Hence, the required change in the potential energy of the stone will be 4.9 J
Answer:
t = 5.05 s
Explanation:
This is a kinetic problem.
a) to solve it we must fix a reference system, let's use a fixed system on the floor where the height is 0 m
b) in this system the equations of motion are
y = v₀ t + ½ g t²
where v₀ is the initial velocity that is v₀ = 0 and g is the acceleration of gravity that always points towards the center of the Earth
e) y = 0 + ½ g t²
t = √ (2y / g)
t = √(2 125 / 9.8)
t = 5.05 s
Answer:
6495.19 Joule
Explanation:
F = Weight of the crate = 250 N
d = Distance the cart is pushed = 30 m
θ = Angle of inclination = 60°
The weight of the crate will be resloved into two components
Fdsinθ and Fdcosθ
Work done by the force of gravity is
W = Fdsinθ
⇒W = 250×30×sin60
⇒W = 6495.19 Joule
∴ The work done by the force of gravity is 6495.19 Joule
The bouncing person because the bounce helped him survive