The velocity of the board relative to the ice is zero, since both are at rest.
<h3>What is relative velocity?</h3>
Relative velocity is the velocity of an object in relation to another reference object or point.
When two objects are travelling or moving with the same velocity in the same direction, the relative velocity one relative to the other is zero.
Also, when two objects are at rest, the relative velocity one relative to the other is zero.
Therefore, the velocity of the board relative to the ice is zero, since both are at rest.
Learn more about relative velocity at: brainly.com/question/24337516
#SPJ1
Answer:
Ball hit the tall building 50 m away below 10.20 m its original level
Explanation:
Horizontal speed = 20 cos40 = 15.32 m/s
Horizontal displacement = 50 m
Horizontal acceleration = 0 m/s²
Substituting in s = ut + 0.5at²
50 = 15.32 t + 0.5 x 0 x t²
t = 3.26 s
Now we need to find how much vertical distance ball travels in 3.26 s.
Initial vertical speed = 20 sin40 = 12.86 m/s
Time = 3.26 s
Vertical acceleration = -9.81 m/s²
Substituting in s = ut + 0.5at²
s = 12.86 x 3.26 + 0.5 x -9.81 x 3.26²
s = -10.20 m
So ball hit the tall building 50 m away below 10.20 m its original level
Answer:
The speed will be "18km/s". A further explanation is given below.
Explanation:
According to the question, the values are:
Wavelength,



As we know,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
⇒ 
or,
⇒ 
Given the equation for the Speed of a Satellite
v = SqRt{Gravitational Constant}{Mass of Earth} divided by the radius given in your problem
we have:
(square root whole term on right side)
v = G Me
———
r
so. (6.67x10^-11)(5.97x10^24)
___________________
(8.0x10^6)
v = 7055 m/s (which is reasonable)
so utilize the Kinetic Energy Formula
KE = 1/2mv^2
KE = 1/2(200)(7055)^2
KE = 4.977x10^9 J
Answer:
B) Power
Explanation:
The power is defined by the following equation:
P = W / t
where:
W = work = Force * Distance = [Newton] * [meter]
t = time = seconds
The units for work are give en Newton per second, which is equal to Joules
And for power the unit used commonly is Watts, therefore:
Watts = (Joule/second)